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This paper is concerned in constructing a deterministic model for the stochastic affine varia-

tional inequality problems with nonlinear perturbation (for short, SVIPP) based on the convex

combined expectations of the least absolute deviation and least squares about the so-called

regularized gap function. We formulate SVIPP as a weighted expected residual minimization

problem (in short, WERM). Some properties of the WERM problem are derived under suitable

conditions. Moreover, we obtain a discrete approximation of WERM problem by applying the

quasi-Monte Carlo method. The limiting behavior of optimal solutions and stationary points

of the approximation problem are analyzed as well.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Variational inequality is a unifying theme for the study of optimization and equilibrium problems, and it plays as an effective

framework in numerical algorithms of optimization problems; see [3,5,12] and the references therein. A large number of real life

applications, such as transportation, economics, engineering and so on, can be formulated as variational inequality problems.

As in many practical problems, some elements may involve uncertain data, stochastic variational inequality problem has been

receiving tremendous attention. Therefore it is necessary and meaningful to study the stochastic variational inequality problems.

Stochastic variational inequality problems may has no solution because the number of random events can be very large in

practice. Therefore, it is significant to construct a deterministic model so as to provide a reasonable resolution for the stochas-

tic variational inequality problems. Recently, there are many papers devoted to studying the stochastic variational inequality

problems; see [1,2,4,7,10,11,13–16,21–23] and the references therein. In general, three major approaches, which include the ex-

pectation approach, the robust programming approach and the chance programming approach, are considered to handle random

data; see [20] for more details. We are concerned in this paper with the expectation approach, which may fit the center of location

of the data well.

Recently, Luo and Lin [13] formulated the stochastic affine variational inequality problems as an optimization problem (ERM

problem) that minimizes the expected residual of the so-called regularized gap function. Properties of the ERM problem were

presented and a quasi-Monte Carlo method was applied for solving the problem, along with its convergence analysis. Moreover,

for closed sample space, Luo and Lin [14] presented a compact approximation approach for a class of stochastic variational in-

equality problems, in which the involved function is nonlinear. Based on [13,14], Ma et al. [16] formulated the stochastic affine

variational inequality problems with nonlinear perturbation as an ERM problem, and studied some properties of the ERM prob-

lem under suitable conditions. In addition, they obtained a discrete approximation of ERM problem by means of quasi-Monte
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Carlo method. The convergence of optimal solutions and stationary points of the approximation problem was also studied with

sample size increasing. It is worth pointing out that all the mentioned ERM problems can be seen as the least absolute deviation

( in short, LAD) loss in statistics.

Although LAD regression method is a robust statistical model tool in the case of data sets subjected to heavy-tailed errors or

outliers, it has some limitations in terms of uniqueness and efficiency of the solution. Specifically, since the loss function for LAD

is not strictly convex, which may lead to the solution not necessarily be unique in general. Moreover, when the noise follows a

normal distribution, that is to say there exist few extreme samples in the data sets, the efficiency of LAD will be reduced in this

case compared with the well-known ordinary least squares (LS) regression, which is the most convenient and efficient approach.

However, the LS method is sensitive to the outliers data distribution, which indicates that it is not robust, see [6,19] for more

details. Thus, it is desirable to develop a new modeling procedure in order to achieve both robustness and efficiency by adapting

to different types of sample spaces. Motivated by these observations, in this paper, for stochastic affine variational inequality

problems with a nonlinear perturbation, we propose a robust and efficient version based on the convex combined expectations

of LAD and LS about the regularized gap function, named as the WERM problem. The differentiability of the objective function

as well as the error bound on solution of WERM problem are characterized, we further obtain that the level set of the objective

function is bounded. Moreover, by means of quasi-Monte Carlo method, we present a discrete approximation of WERM problem.

Finally, we show that the sequences of optimal solutions and stationary points of the approximation problem converges to the

true optimal value and true stationary point as the sample size goes to infinity, respectively.

The rest of this paper is organized as follows. In Section 2, we recall some notions and preliminary results. In Section 3, some

properties of the WERM problem are obtained under certain suitable conditions, and a discrete approximation of WERM problem

is followed by using the quasi-Monte Carlo method. Then, the limiting behavior of optimal solutions and stationary points of the

approximation problem are studied in Section 4.

2. Preliminaries

Let R
n be the n-dimensional Euclidean space. The classical variational inequality problem, denoted by VI(f, S), is to find a

vector x́ ∈ S such that

(x − x́)� f (x́) ≥ 0, ∀x ∈ S,

where S ⊆ R
n is a nonempty closed convex set and f : R

n → R
n. In [8,9], Fukushima defined a regularized gap function

g(x) := max
y∈S

{(x − y)� f (x) − α

2
‖x − y‖2

G},
where α is a positive parameter, G is an n × n symmetric positive-definite matrix, and ‖ · ‖G means the G−norm defined by

‖x‖G =
√

x�Gx for x ∈ R
n. It has been shown that

(1) g(x) ≥ 0 for every x ∈ S;

(2) For x ∈ S, g(x) = 0 if and only if x solves VI(f, S);

(3) H(x) := ProjS,G(x − α−1G−1 f (x)) is the unique solution of the problem:

max
y∈S

{(x − y)� f (x) − α

2
‖x − y‖2

G},
where ProjS, G denotes the projection operator onto S under the G−norm.

Clearly, VI(f, S) is equivalent to the following minimization problem:

min
x∈S

g(x),

and if f is continuously differentiable, then ∇g(x) = f (x) − (∇ f (x) − αG)(H(x) − x).

Recently, stochastic variational inequality problem has attracted considerable attention, which is to find a vector x̃ ∈ S such

that

(x − x̃)�F(x̃,ω) ≥ 0, x ∈ S,ω ∈ � a.s. (1)

where F : R
n × � → R

n is a mapping, � ⊂ R
m is the underlying sample space and a.s. is short for “almost surely” under the given

probability measure. We choose a scalar α > 0 and an n × n symmetric positive definite matrix G. Following [8,9], we define a

regularized gap function g : R
n × � → [0,∞) for (1) as follows:

g(x,ω) := max
y∈S

{(x − y)�F(x,ω) − α

2
‖x − y‖2

G}. (2)

In view of Theorem 10.2.3 (a) of [5], for any x ∈ S and ω ∈ �, it follows that

g(x,ω) = (x − H(x,ω))�F(x,ω) − α

2
‖x − H(x,ω)‖2

G, (3)

where

H(x,ω) := projS,G(x − α−1G−1F(x,ω)). (4)

In the following, we suppose that g(x, ·) is integrable on � for each x ∈ S, and n × n symmetric positive-definite matrix G is given.
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