An inequality between the edge-Wiener index and the Wiener index of a graph

Martin Knor ${ }^{\text {a,b }}$, Riste Škrekovski ${ }^{\text {b,c,d }}$, Aleksandra Tepeh ${ }^{\text {b,e,* }}$
${ }^{\text {a }}$ Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Mathematics, Radlinského 11, Bratislava 813 68, Slovakia
${ }^{\text {b }}$ Faculty of Information Studies, Novo Mesto 8000, Slovenia
c FAMNIT, University of Primorska, Koper 6000, Slovenia
${ }^{\text {d }}$ Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana 1000, Slovenia
${ }^{\text {e }}$ Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, Maribor 2000, Slovenia

A R T I CLE I N F O

Keywords:

Wiener index
Gutman index
Line graph

Abstract

The Wiener index $W(G)$ of a connected graph G is defined to be the sum $\Sigma_{u, v} d(u, v)$ of distances between all unordered pairs of vertices in G. Similarly, the edge-Wiener index $W_{e}(G)$ of G is defined to be the sum $\Sigma_{e, f} d(e, f)$ of distances between all unordered pairs of edges in G, or equivalently, the Wiener index of the line graph $L(G)$. Wu (2010) showed that $W_{e}(G) \geq W(G)$ for graphs of minimum degree 2 , where equality holds only when G is a cycle. Similarly, in Knor et al. (2014), it was shown that $W_{e}(G) \geq \frac{\delta^{2}-1}{4} W(G)$ where δ denotes the minimum degree in G. In this paper, we extend/improve these two results by showing that $W_{e}(G) \geq \frac{\delta^{2}}{4} W(G)$ with equality satisfied only if G is a path on 3 vertices or a cycle. Besides this, we also consider the upper bound for $W_{e}(G)$ as well as the ratio $\frac{W_{e}(G)}{W(G)}$. We show that among graphs G on n vertices $\frac{W_{e}(G)}{W(G)}$ attains its minimum for the star.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

For a graph G, let $\operatorname{deg}(u)$ and $d(u, v)$ denote the degree of a vertex $u \in V(G)$ and the distance between vertices $u, v \in V(G)$, respectively. Let $L(G)$ denote the line graph of G, that is, the graph with vertex set $E(G)$ and two distinct edges $e, f \in E(G)$ adjacent in $L(G)$ whenever they share an end-vertex in G. Furthermore, for $e, f \in E(G)$, we let $d(e, f)$ denote the distance between e and f in the line graph $L(G)$.

In this paper we consider three important graph invariants, called Wiener index (denoted by $W(G)$ and introduced in [36]), edge-Wiener index (denoted by $W_{e}(G)$ and introduced in [21]) and Gutman index (denoted by Gut(G) and introduced in [12]), which are defined as follows:

$$
\begin{aligned}
& W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v), \\
& W_{e}(G)=\sum_{\{e, f\} \subseteq E(G)} d(e, f),
\end{aligned}
$$

[^0]$$
\operatorname{Gut}(G)=\sum_{\{u, v\} \subseteq V(G)} \operatorname{deg}(u) \operatorname{deg}(v) d(u, v)
$$

Observe that the edge-Wiener index of G is nothing but the Wiener index of the line graph $L(G)$ of G. Note also that in the literature a slightly different definition of the edge-Wiener index is sometimes used; for example, in [20] edge-Wiener index is defined to be $W_{e}(G)+\binom{n}{2}$ where $W_{e}(G)$ is defined as above and n is the order of G.

The Wiener index and related distance-based graph invariants have found extensive application in chemistry, see for example [14,15,34], and [2,8,16-18,30,31]] for some recent studies. The Wiener index of a graph was investigated also from a purely graph-theoretical point of view (for early results, see for example [9,33], and [4,25,26,38] for some surveys). Generalizations of Wiener index and relationships between these were studied in a number of papers (see for example [3,5,6,20]), and relationships between generalized graph entropies and the Wiener index (among other related topological indices) were established in [28]. New results on the Wiener index are constantly being reported, see for instance [10,19,23,29,35] for recent research trends.

Wu [37] showed that $W_{e}(G) \geq W(G)$ for graphs of minimum degree 2 where equality holds only when G is a cycle. Similarly, in [24] it was shown that $W_{e}(G) \geq \frac{\delta^{2}-1}{4} W(G)$ where δ denotes the minimum degree in G. In this paper, we improve these two results by showing that $W_{e}(G) \geq \frac{\delta^{2}}{4} W(G)$ with equality satisfied only if G is a path on 3 vertices or a cycle. One of the closely related distance-based graph invariant is the Szeged index [11], and a relation between the Szeged index and its edge version was recently established in [27].

In [3] it was proved that $W_{e}(G) \leq \frac{2^{2}}{5^{5}}+O\left(n^{9 / 2}\right)$ for graphs of order n. Using the result of [32] we improve this bound to $W_{e}(G) \leq \frac{2^{2}}{5^{5}}+O\left(n^{4}\right)$. We also consider the ratio $\frac{W_{e}(G)}{W(G)}$ and show that this ratio is minimum if G is the star S_{n} on n vertices. Consequently, if G is a graph on n vertices, then $\frac{W_{e}(G)}{W(G)} \geq \frac{n-2}{2(n-1)}$.

2. Distances, average distance and D_{α} relations

Note that for any two distinct edges $e=u_{1} u_{2}$ and $f=v_{1} v_{2}$ in $E(G)$, the distance between e and f equals

$$
\begin{equation*}
d(e, f)=\min \left\{d\left(u_{i}, v_{j}\right): i, j \in\{1,2\}\right\}+1 \tag{1}
\end{equation*}
$$

In the case when e and f coincide, we have $d(e, f)=0$. In addition to the distance between two edges we will also consider the average distance between the endpoints of two edges, defined by

$$
s\left(u_{1} u_{2}, v_{1} v_{2}\right)=\frac{1}{4}\left(d\left(u_{1}, v_{1}\right)+d\left(u_{1}, v_{2}\right)+d\left(u_{2}, v_{1}\right)+d\left(u_{2}, v_{2}\right)\right)
$$

Notice that $s(e, f)=\frac{1}{2}$ when e and f coincide. The average distance of endpoints is in an interesting relationship with the Gutman index of a graph. Namely, if one likes to consider the version of edge-Wiener index where the distances between edges are replaced by the average distances of their endpoints, then what one gets is essentially the Gutman index, see Lemma 1.

A variation to the following result was mentioned in [24,37], where the sum in (2) is taken over all ordered pairs of edges. In our case the sum runs over all 2-element subsets of $E(G)$.
Lemma 1. Let G be a connected graph. Then

$$
\begin{equation*}
\sum_{\{e, f\} \subseteq E(G)} s(e, f)=\frac{1}{4}(\operatorname{Gut}(G)-|E(G)|) . \tag{2}
\end{equation*}
$$

Proof. Consider the sum on the left-hand side of (2). We can rewrite it as

$$
\frac{1}{4} \sum_{\{u w, v z\} \subseteq E(G)}(d(u, v)+d(u, z)+d(w, v)+d(w, z))
$$

Now, for any two non-adjacent vertices of G, say u and v, the distance $d(u, v)$ appears in the above sum precisely once for each pair of edges, where one of these edges is incident with u and the other is incident with v. Thus, $d(u, v)$ appears in total precisely $\operatorname{deg}(u) \cdot \operatorname{deg}(v)$ times. And, if u and v are two adjacent vertices of G, then the distance $d(u, v)=1$ appears in that sum precisely $\operatorname{deg}(u) \cdot \operatorname{deg}(v)-1$ times. Thus, the above sum equals

$$
\frac{1}{4}\left[\sum_{u v \notin E(G)} \operatorname{deg}(u) \operatorname{deg}(v) d(u, v)+\sum_{u v \in E(G)}(\operatorname{deg}(u) \operatorname{deg}(v)-1) d(u, v)\right]
$$

which is the right-hand side of (2).
Now we define the following notions. Let G be a graph. For a pair of edges e and f of G we define the difference

$$
D(e, f)=d(e, f)-s(e, f)
$$

Moreover, if $D(e, f)=\alpha$, we say that e, f form a pair of type D_{α} or that the pair e, f belongs to the set D_{α}. Note that if $e=f$, then $D(e, f)=-\frac{1}{2}$. Denote by \mathcal{I} the set $\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$. Note that $\sum_{\alpha \in \mathcal{I}}\left|D_{\alpha}\right|=\binom{|E(G)|}{2}$. Next easy lemma shows that $D(e, f) \in \mathcal{I}$ whenever $e \neq f$.

https://daneshyari.com/en/article/6420183

Download Persian Version:

https://daneshyari.com/article/6420183

Daneshyari.com

[^0]: * Corresponding author at: Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia. Tel.: +386 41912698; fax: +386 22207272.

 E-mail addresses: knor@math.sk (M. Knor), skrekovski@gmail.com (R. Škrekovski), aleksandra.tepeh@gmail.com (A. Tepeh).

