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aUniversité Paris-Est, IFSTTAR, F-77447 Champs sur Marne, France
b Institute of Scientifc Computing, Technische Universität Braunschweig, D-38106 Braunschweig, Germany

a r t i c l e i n f o

Keywords:
Inverse problems
Bayesian updating
Optimal control
Adjoint method
Structural dynamics

a b s t r a c t

Two classical civil engineering inverse problems are considered. The first deals with the
determination of dynamic moving loads applied to a reinforced concrete beam. The second
one corresponds to the monitoring and the damage assessment. The concrete damage due
to overloading is modeled by a loss of the concrete Young’ modulus, whereas the steel bar
damage due to corrosion effects is modeled by a reduction of the steel bar cross section. To
identify the loading and damage parameters, deterministic and probabilistic model updat-
ing techniques are applied and compared. In the deterministic approach, a gradient descent
technique based on the adjoint framework is used to minimize the data misfit functional
with a Tikhonov regularization term. Then, a regularization by a means of Bayes’s rule is
considered in a probabilistic approach. The estimation is of the minimum variance type
achieved with the help of the transformed ensemble Kalman filter.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Structural Health Monitoring is particularly useful to detect and localize damages, to reduce the maintenance cost of
structures and to ensure user safety. To prevent early damages, smart systems have been developed to identify overloaded
vehicles on civil engineering structures such as bridges and viaducts. One particular example of these is the Bridge
Weigh-In-Motion (B-WIM) system that has been studied for the last 30 years [1–3]. Concerning the damage identification,
according to [4] one may distinguish four categories: the detection of damage (level 1), localization (level 2), quantification
of the damage (level 3), and lifetime prediction update (level 4). Categories of level 1 and 2 can be achieved with the help of
the data driven methods, such as for example vibration-based techniques. For this purpose one can use modal-based [5,6] or
static based statistical approaches [7,8]. To accomplish higher level categories, one requires model updating techniques. The
parameter (model) estimation from the noisy indirect sensor outputs is not an easy task. As the problem is generally
ill-posed, it requires a certain kind of regularization [9]. In the deterministic sense, the regularization is very often achieved
by a Tikhonov regularization [10]. However, other possible techniques also exist, for example Constitutive Relation Error
(CRE) regularization [11–13] previously studied by one of authors. On the other hand, the ill-posed problem can be
regularized in a probabilistic manner via Bayes rule by adding the prior expert knowledge on the parameter (model) set next
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to the observation data. Most of these approaches are based on the Monte Carlo kind of sampling procedures, such as for
instance Markov Chain Monte Carlo techniques [14,15]. In recent years, another more simple kind of methods has appeared.
This often assumes linearity of the observation operator and Gaussian noise—the linear Bayesian filter—such as the ensemble
Kalman filter [16] and its generalization in the form of polynomial chaos based linear filter [17,18]. In case of nonlinearity
these can be extended to more complex and accurate forms as presented in [19,20].

The objective of this paper is to qualitatively and not quantitatively compare deterministic [21] and probabilistic [17]
updating techniques. For this purpose Tikhonov regularization and ensemble Kalman filter procedures are applied on two
important civil engineering applications: the identification of a moving load on a reinforced concrete beam, and the detec-
tion of damages in the concrete and steel bar of the beam. The identification is performed by using the full temporal data
read by strain sensors and the structural dynamic model based on the partial differential equation.

The article is organized as follows: Section 2 summarizes the motivation behind this work and focuses on the description
of two inverse civil engineering problems of huge practical importance. Section 3 lays out the mathematical dimension of the
numerical approaches used in this research, and Section 4 ties up the numerical findings of both deterministic and proba-
bilistic computational approaches.

2. Model problem

A simplified model of a two-dimensional (2D) concrete beam occupying the domain X with a single perfectly adherent
horizontal steel bar C is considered (see Fig. 1) in the time interval ½0; T�. The beam is supported on the boundaries @Xi1

and @Xi2 and further assumed to be under plain strain and small perturbation assumption conditions. A dynamic moving
load Fdðv; tÞ is applied to the top @XFd of the concrete beam, whereas XF0 represents the stress-free boundary condition.

The mechanical model is described by the following partial differential equations (PDEs).

� Dynamic equilibrium equations:

qc€u� divðrÞ ¼ 0; in fX� Cg � ½0; T� ð1Þ

qbSb€ux � @N
@x

� srxytC ¼ 0; in C� ½0; T� ð2Þ
qbSb€uy � sryytC ¼ 0; in C� ½0; T� ð3Þ

� Boundary conditions:

r nj@XF0 ¼ 0; in @XF0 � ½0; T� ð4Þ
r nj@XFd

¼ Fdðv; tÞ; in @XFd � ½0; T� ð5Þ
u ¼ 0; in @Xi1 � ½0; T� ð6Þ
u � y ¼ 0; in @Xi2 � ½0; T� ð7Þ
r nj@Xi2

� x ¼ 0; in @Xi2 � ½0; T� ð8Þ
� Initial conditions:

uðt ¼ 0Þ ¼ 0; in X ð9Þ
_uðt ¼ 0Þ ¼ 0; in X ð10Þ

� Constitutive relation:

r ¼ K c : �ðuÞ; in X� ½0; T� ð11Þ

N ¼ EbSb
@ux

@x
; in C� ½0; T� ð12Þ

In the following, the system of PDEs (1)–(12) is called ‘‘direct problem”. In the governing equations, qc (resp. qb) repre-
sents the volumic mass of the concrete (resp. steel bar), Sb and Eb are the area of the steel bar cross-section and correspond-
ing Young’s modulus, ux and uy denote the components of the displacement vector u;N is the tension in the steel bar C, and

n@X is the exterior normal vector to the boundary. Furthermore, s � tC is the jump of � on C, and _X ¼ @X=@t and €X ¼ @2X=@t2

are used to denote the partial derivatives of some considered variable X over time. Finally, r and � are symmetric stress and
strain second order tensors, respectively. Due to the small strain assumption, the strain matrix can be computed via the dis-
placement vector u

�ðuÞ ¼ �xx �xy
�xy �yy

� �
¼

@ux

@x
1
2

@ux

@y
þ @uy

@x

� �
1
2

@ux

@y
þ @uy

@x

� �
@uy

@y

26664
37775 ð13Þ
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