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a b s t r a c t

This paper presents our numerical results of the application of Isogeometric Analysis (IGA)
to the velocity–pressure formulation of the steady state as well as to the unsteady incom-
pressible Navier–Stokes equations. For the approximation of the velocity and pressure
fields, LBB compatible B-spline spaces are used which can be regarded as smooth general-
izations of Taylor–Hood pairs of finite element spaces. The single-step h-scheme is used for
the discretization in time. The lid-driven cavity flow, in addition to its regularized version
and flow around cylinder, are considered in two dimensions as model problems in order to
investigate the numerical properties of the scheme.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Isogeometric Analysis technique, developed by Hughes et al. [7], is a powerful numerical technique aiming to bridge
the gap between the worlds of computer-aided engineering (CAE) and computer-aided design (CAD). It combines the ben-
efits of Finite Element Analysis (FEA) with the ability of an exact representation of complex computational domains via an
elegant mathematical description in the form of uni-, bi- or trivariate non-uniform rational B-splines. Non-Uniform Rational
B-splines (NURBS) are the de facto industry standard when it comes to modeling complex geometries, while FEA is a numer-
ical approximation technique that is widely used in computational mechanics.

NURBS and FEA utilize basis functions for the representation of geometry and approximation of field variables, respec-
tively. In order to close the gap between the two technologies, Isogeometric Analysis adopts the B-spline, NURBS or T-spline
(see [7]) geometry as the computational domain and utilizes its basis functions to construct both trial and test spaces in the
discrete variational formulation of differential problems. The usage of these functions allows the construction of approxima-
tion spaces exhibiting higher regularity (CP0) which – depending on the problem to be solved – may be beneficial compared
to standard finite element spaces. For instance, Cottrell, Hughes and Reali showed in their study of refinement and continuity
in isogeometric structural analysis [8] that increased smoothness leads to a significant increase in accuracy for the problems
of structural vibrations over the classical C0 continuous p-method of FEA. Isogeometric Analysis has been successfully
applied to high order partial differential equations (PDEs) from a wide range of fields of computational mechanics. In fact,
primal variational formulations of high order PDEs such as Navier–Stokes–Korteweg (3rd order spatial derivatives) or
Cahn–Hilliard (4th order spatial derivatives) require piecewise smooth and globally C1 continuous basis functions. Note that
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the number of finite elements possessing C1 continuity and being applicable to complex geometries is already very limited in
two dimensions [13,14]. The Isogeometric Analysis technology features a unique combination of attributes, namely, superior
accuracy on degree of freedom basis, robustness, two- and three-dimensional geometric flexibility, compact support, and the
possibility for CP0 continuity [7].

This article is all about the application and assessment of the Isogeometric Analysis approach to fluid flows with respect
to well known benchmark problems. We present our numerical results for the lid-driven cavity flow problem (including its
regularized version) using different B-spline approximation spaces, and compare them to reference results from literature.
Moreover, in addition to comparisons with classical references, we will whenever feasible take into consideration the results
of two recently published articles [9,21] on the application of Galerkin-based IGA to the cavity flow problem. The analysis
presented in [21] is based on a scalar stream function formulation of the Navier–Stokes equations, while [9] uses diver-
gence-conforming B-splines which may be interpreted as smooth generalizations of Raviart–Thomas elements. We extend
this Galerkin IGA-based row of results for cavity flow with data obtained from the application of smooth generalizations
of Taylor–Hood elements. Despite the fact that investigations of lid-driven cavity type model problems do not necessarily
reflect the current spirit of time, they are nonetheless a natural first choice in computational fluid dynamics when it comes
to assessing the properties of a novel numerical technique.

Subsequent to lid-driven cavity, we eventually proceed to present and assess approximated physical quantities such as
the drag and lift coefficients obtained for the flow around cylinder benchmark, whereby a multi-patch discretization
approach is adopted. For the scenarios addressed, Isogeometric Analysis is applied to the steady-state as well as to the tran-
sient incompressible Navier–Stokes equations. For the equations under consideration are of nonlinear nature, we decided to
provide a rather detailed insight concerning their treatment. The efficient solution of the discretized system of equations
using iterative solution techniques such as, for instance, multigrid is not addressed in this paper. Preliminary research results
are underway and will be presented in a forthcoming publication. In this numerical study, all systems of equations have been
solved with a direct solver.

The outline of this paper is as follows: Section 2 is devoted to the introduction of the univariate and the multivariate
(tensor product) B-spline and NURBS (non-uniform rational B-spline) basis functions, their related spaces, and the NURBS
geometrical map F. This presentation is quite brief and notationally oriented. A more complete introduction to NURBS and
Isogeometric Analysis can be found in [18,7,3]. Section 3 formalizes Taylor–Hood like discrete approximation spaces being
used in different peculiarities throughout this article. Section 4 is dedicated to the presentation of the governing equations
and their variational forms. The numerical results are showcased in Section 5. In particular, in Sections 5.2 and 5.4, numerical
results of Isogeometric Analysis of lid-driven cavity flow and flow around cylinder are presented and compared with reference
results from literature. Section 6 is dedicated to a short summary in addition to drawn conclusions.

2. Preliminaries

In order to fix the notation and for the sake of completeness, this section presents a brief overview of B-spline/NURBS
basis functions and their corresponding spaces utilized in Isogeometric Analysis.

Galerkin-based Isogeometric Analysis adopts spline (B-spline/NURBS, etc.) basis functions for analysis as well as for the
description of the geometry (computational domain). Just like in FEA, a discrete approximation space – based on the span of
the basis functions in charge – is constructed and eventually used in the framework of a Galerkin procedure for the numer-
ical approximation of the solution of partial differential equations.1

Recalling reference ð~XÞ and physical domains ðXÞ in FEA, using B-splines/NURBS, one additional domain – the parametric

spline domain ðX̂Þ – needs to be considered as well (see Fig. 1). We follow this requirement and present an insight in the
traits of spline-based discrete approximation spaces in the sequel.

Given two positive integers p and n, we introduce the ordered knot vector

N :¼ f0 ¼ n1; n2; . . . ; nm ¼ 1g; ð1Þ

whereby repetitions of the m ¼ nþ pþ 1 knots ni are allowed: n1 6 n2 6 . . . 6 nm. Note that in (1) the values of N are
normalized to the range ½0;1� merely for the sake of clarity and not restricted in range otherwise. Besides, we assume that
N is an open knot vector, that is, the first and last knots have multiplicity pþ 1:

N ¼ f0; . . . ;0|fflfflfflffl{zfflfflfflffl}
pþ1

; npþ2; . . . ; nm�p�1;1; . . . ;1|fflfflfflffl{zfflfflfflffl}
pþ1

g:

Let the (univariate) B-spline basis functions of degree p (order pþ 1) be denoted by Bi;pðnÞ, for i ¼ 1; . . . ;n. Then, the ith
B-spline basis function is a piecewise polynomial function and it is recursively defined by the Cox-de Boor recursion
formula:

1 We point out on a side note that IGA is not restricted to the Galerkin framework and has as a matter of fact been successfully used with Collocation
techniques as well, see for instance [2,20].
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