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a b s t r a c t

The computational efficiency of numerical solvers is known to strongly depend on the cho-
sen time integration scheme. Thus, when solving viscous flow problems on time-varying
domains, an efficient and reliable solver is one of the prerequisites for a successful solution.
For this reason, we provide a comparison of two time integration schemes in terms of
numerical error and CPU time usage.

The contribution of the paper lies in the mutual comparison of two different approaches
for time integration of the compressible Navier–Stokes equations in arbitrary Lagrangian–
Eulerian (ALE) description that are spatially discretised by the discontinuous Galerkin finite
element method. The computational ability of implicit Crank–Nicolson scheme and explicit
three-step Runge–Kutta scheme, computational performance of which is improved by the
local time-stepping technique, are tested on two flow problems: the propagation of an
isentropic vortex, which has a known analytical solution, and the viscous flow around an
oscillating NACA 0012 airfoil. All numerical simulations are carried out on unstructured
triangular meshes by using a continuous mapping between the reference and time-varying
domains.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

During the last decade, the discontinuous Galerkin (DG) finite element method, first proposed by Reed and Hill [1], has
become very popular for the solution of various problems from the field of fluid mechanics [2–4], electrodynamics or elec-
tromagnetism [5–7] and plasma physics [8]. The reasons behind the popularity can be attributed to the method’s ability to
achieve high order of spatial accuracy combined with low artificial damping, robustness and overall stability, thus, making it
an ideal method for the simulation of laminar and turbulent flows with complex vortical structures. Although able to pro-
duce stable and high-order accurate solutions on fully unstructured meshes, the DG method is associated with a large num-
ber of unknowns, which with increasing problem size can substantially increase the computational demands. For this reason,
the choice of a time integration method is of crucial importance [9,10].

Most often, the time discretisation is carried out with an explicit time integration scheme that represents the simplest
choice. It is, however, well known that the computational efficiency of explicit schemes is directly affected by the maximal
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size of the global time-step restricted by the CFL condition of stability. This restriction becomes particularly notable in
computational meshes with large variations in element size that are very common in computational practice. For example,
when a local mesh refinement is needed due to the presence of sharp corners in the geometry or due to the presence of shock
waves. In this case, the smallest element can significantly reduce the size of the global time step and, thus, hamper the over-
all computational efficiency. To overcome the disadvantage, a local time-stepping (LTS) technique can be used, see, e.g., [7].
As the name suggests, the LTS method utilises the principle of local time steps that are computed for each element indepen-
dently. In this way, a massive reduction of CPU time can be achieved without the need to significantly alter the computa-
tional algorithm developed for an explicit scheme.

Another way, how to overcame the restriction imposed by the CFL condition, is to introduce an implicit time integration
method with a large interval of stability. Although this approach may seem straightforward, it is a fact that the application of
implicit schemes gives rise to several problems. Among them, it is possible to mention the need to solve a system of non-
linear algebraic equations during every time iteration, which in large size problems may negatively affect the CPU time. It
is also not insignificant that implicit schemes are generally difficult to program and cannot be easily parallelised as the
explicit ones. Moreover, meshes with elements of highly disparate size are known to lead to ill-conditioned problems with
implicit schemes.

By taking into consideration all the advantages and disadvantages of explicit and implicit schemes, a question naturally
arises, whether the modification of explicit schemes in the form of the LTS method can provide higher or at least comparable
computational performance than their implicit counterparts. For unsteady 3D viscous flow simulations in non-deforming
domains, an answer to this question can be found in [9], where the authors compared various Jacobian free implicit methods
with selected explicit ones. On the basis of the presented results, the authors concluded that explicit schemes can achieve
approximately the same computational performance as the implicit ones when the LTS technique is applied, as well.

By following up the work of Birken et al. [9], we try to find an answer to the question above by solving unsteady flow
problems in time-varying domains, where the numerical solution is also dependent on the mapping procedure between
the fixed reference configuration and the real domain. To determine the impact of time integration on CPU time usage
and numerical error, we consider two well-known explicit and implicit time integration schemes – the explicit three-step
Runge–Kutta method, performance of which is improved by the local time-stepping method, and the implicit Crank–
Nicolson method.

The structure of the paper is outlined as follows: First, the equations governing the viscous flow in a time-varying domain
are introduced and discretised in the sense of the DG method. Next, the time integration with the explicit LTS and implicit
schemes is carried out, followed by a description of the mapping procedure necessary for the solution of flow problems on
moving domains. In the next section, the computational ability of the developed explicit and implicit solvers is first verified
for an inviscid model problem consisting of a moving isentropic vortex [11] and then used for the numerical simulation of
viscous flow around an oscillating NACA 0012 airfoil, motion of which is prescribed by a time-dependent function. Finally,
we summarise our work, give some concluding remarks and provide a brief outline of future work.

2. Mathematical model and DG discretisation

2.1. Governing equations

The mathematical model describing the compressible viscous flow in a two-dimensional time-varying computational
domain consists of the non-linear conservative system of the Navier–Stokes equations in ALE form. The equations written
in the compact vector form are given as
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where l is the dynamic viscosity and dij is the Kronecker delta. By Us we denote the components of the domain velocity. The
system of governing equations (1) is completed by the constitutive relations for ideal gas and temperature
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where p is the pressure, j ¼ 1:4 is the adiabatic index and Pr ¼ 0:72 is the Prandtl number.
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