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a b s t r a c t

For eigenvalue problems of self-adjoint differential operators, a universal framework is
proposed to give explicit lower and upper bounds for the eigenvalues. In the case of the
Laplacian operator, by applying Crouzeix–Raviart finite elements, an efficient algorithm
is developed to bound the eigenvalues for the Laplacian defined in 1D, 2D and 3D spaces.
Moreover, for nonconvex domains, for which case there may exist singularities of eigen-
functions around re-entrant corners, the proposed algorithm can easily provide eigenvalue
bounds. By further adopting the interval arithmetic, the explicit eigenvalue bounds from
numerical computations can be mathematically correct.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The eigenvalue problem plays an important role in both natural and engineering sciences. In this paper, we consider the
class of self-adjoint eigenvalue problems, the eigenvalues of which are real numbers, and propose a universal framework to
give lower and upper bounds for eigenvalues.

For a long time, the numerical analysis for eigenvalue problems, for example, of Laplacian eigenvalues, has been well
documented in literature. Most classical research focuses on the qualitative analysis of numerical schemes, such as conver-
gence order. But, quantitative analysis, for example, explicit eigenvalue bounds, has not drawn much interest from
researchers.

Recently, explicit eigenvalue bounds have become more indispensable, especially in adaptive computing of the finite ele-
ment method (FEM) and in the computer-assisted proof for nonlinear differential equations. For example, a good indicator
for the error of approximate solutions requires the explicit error estimation for various interpolation operators. The estima-
tion of error constants is reduced to eigenvalue problems of Laplace and biharmonic operators; see, [10,13]. In addition, ver-
ifying the solution for nonlinear differential equations requires eigenvalue bounds of the controlling differential operators;
see, e.g., [17,19,22].

Generally, we can easily obtain upper bounds for eigenvalues by using Rayleigh–Ritz’s method, but lower eigenvalue
bounds remain difficult to find. Theoretical analysis of eigenvalue bounds, which is independent of numerical scheme selec-
tion, includes the early work of Kato, Weinstein and Stenger, Lehmann, Beattie and Goerisch, Behnke and Goerisch, Goerisch
[9,23,11,1,4,7]. These theories provide nice eigenvalue bounds, assuming there are rough a priori bounds for the eigenvalues.
A good choice to provide the necessary a priori eigenvalue bounds is the homotopy method proposed by Plum [18], which
considers the connection between the base problem—with a known spectrum—to the objective problem. With a domain
transformation, this method can even deal with the domain of general shapes. However, to apply the homotopy method
in solving practical problems, we need case-by-case efforts in setting up the homotopy process.
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In practical computation, such methods as the FEM, finite difference method, and intermediate method, can result in good
eigenvalue approximation. However, most of these methods have difficulties in dealing with domains of general shapes if
rigorous eigenvalue bounds are wanted, and the indices of eigenvalues are not easy to verify; see [15] for a review of such
methods and the reference therein. In Liu and Oishi [15], by applying the hypercircle equation technique, the authors devel-
oped an algorithm that can provide guaranteed lower and upper eigenvalue bounds for the Laplacian. By inheriting the
advantage of FEMs, such an algorithm can naturally deal with eigenvalue problem over domains of arbitrary shape.

In this paper, we extend the algorithm of Liu and Oishi [15] to more general cases defined by abstract bilinear forms.
Moreover, the proposed method enables the utility of non-conforming FEMs. For non-conforming finite elements, the
numerical results themselves can be lower bounds for eigenvalues if the mesh size is small enough from the asymptotic
analysis (see, e.g., [24,16]). But the necessary small enough condition usually cannot be verified explicitly. In our proposed
algorithm, based on the computation results of non-conforming FEMs, guaranteed lower eigenvalue bounds are possible,
even for a very raw mesh. The proposed algorithm can deal with the Laplace and Biharmonic eigenvalue problems. In this
paper, we focus on the Laplacian eigenvalue problems.

For the eigenvalue problem of Laplacian, the Crouzeix–Raviart finite element is adopted to give lower eigenvalue bounds
(see details in Section 3): Let kk be the kth eigenvalue and kh;k the kth approximate eigenvalue. A lower bound of kk is given as

kh;k

1þ C2
hkh;k

6 kk;

where Ch is a constant related to error estimation for the Crouzeix–Raviart interpolation Ph; see definition in Section 3.1. Let
the diameter of an element K be h. The constant Ch is the one to make the following estimation hold:

ku�Phuk0;K 6 Chju�Phuj1;K :

Here,

� Ch ¼ h=p when K is an interval in R1, which is an already known result;
� Ch ¼ 0:1893h for a triangle element K in R2;
� Ch ¼ 0:3804h for a tetrahedron element K in R3.

Moreover, the selection of Ch for R1 is optimal and the value Ch ¼ 0:1893h for R2 is very near to optimal.
When this research was almost finished, we found independent results of Carstensen and Gallistl [5,6], which also use

non-conforming FEMs to give lower eigenvalue bounds, but a separation condition is needed. As explained in Remark 3.1,
the separation condition is in fact not needed. Also, our results give better estimation of the constant Ch for eigenvalue
problems of the Laplacian in the 2D case.

The remainder of this paper is organized as follows: In Section 2, we introduce the eigenvalue problem defined in an
abstract form along with the main theorem that provides lower eigenvalue bounds. In Section 3, the eigenvalue problem
of the Laplacian is considered in Rmðm ¼ 1;2;3Þ. In Section 4, an optimal estimation of the error constant Ch for 2D case
is given. In Section 5, the computation results are presented. Finally, in Section 6, we state our conclusions and discuss
the scope for future work.

2. Abstractly defined eigenvalue problems and lower eigenvalue bounds

Let X be a domain of Rm (m ¼ 1;2;3). We show the assumptions for function spaces to be used in the main theorem on
eigenvalue bounds.

A1 V is a Hilbert space of real function on X with the inner product Mð�; �Þ and the corresponding norm k � kM :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð�; �Þ

p
.

A2 Nð�; �Þ is another inner product of V. The corresponding norm k � kN :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Nð�; �Þ

p
is compact for V with respect to k � kM ,

i.e., every sequence in V which is bounded in k � kM has a subsequence which is Cauchy in k � kN .

To deal with conforming or non-conforming finite element spaces in eigenvalue evaluations, we further take the follow-
ing assumptions.

A3 Vh is a finite dimensional space of real function over X; DimðVhÞ ¼ n (the value of n is fixed). Notice that Vh may not be

a subspace of V. Define VðhÞ :¼ V þ Vh ¼ fv þ vhjv 2 V ;vh 2 Vhg.
A4 Bilinear forms Mhð�; �Þ and Nhð�; �Þ on VðhÞ are extension of Mð�; �Þ and Nð�; �Þ to VðhÞ such that

– Mhðu;vÞ ¼ Mðu;vÞ; Nhðu;vÞ ¼ Nðu;vÞ for all u; v 2 V .
– Mhð�; �Þ and Nhð�; �Þ are symmetric and positive definite on VðhÞ.

The assumption A4 implies that Mhð�; �Þ and Nhð�; �Þ are also inner products of VðhÞ. For purpose of simplicity, the extended
bilinear forms Mhð�; �Þ and Nhð�; �Þ are still denoted by Mð�; �Þ and Nð�; �Þ and the corresponding norms are denoted by k � kM and
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