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a b s t r a c t

The paper refers about the development of a fast computational code, which should be able
to provide an approximate information about the three-dimensional flow field in a multi-
stage turbine. The code is based upon the solution of circumferentially averaged Euler
equations coupled with the thermodynamic, geometry and loss prediction models. The
computational domain is the meridional cut of a turbine. The Euler equations are solved
by a finite volume solver with the AUSM type flux. Initial tests showed, that developed
solver is able to predict well radial distributions of flow parameters upstream and
downstream considered blade cascades at a fraction of CPU time compared to fully
three-dimensional simulations.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The paper refers about the development of a fast computational code intended for early stages of turbine design. There
exist different methods ranging from quasi 1D solvers [1] to solvers based on the circumferentially averaged Euler [2] or
Navier–Stokes [3] equations. The aim of this work is to develop a code, which is able to provide an approximate informa-
tion about the three-dimensional flow field in a multistage turbine. It is based upon the solution of steady circumferentially
averaged flow. The computational domain is two-dimensional. It is defined by the meridional cut of a turbine, i.e. the real
shapes of hub and tip casing are parts of the domain boundary. The shapes of the pressure and the suction surfaces of the
blade, which cannot be described by the definition of the computational domain, are included in the form of additional
parameters. The variable thickness of blades is taken into account using the channel width parameter. The shape of the
blades is approximated by the shape of the midplane, which is located in the middle between the suction and the pressure
surfaces of the blade. This plane is implemented in the form of normal vectors. Similarly to [2] the flow is modeled by the
circumferentially averaged Euler equations, which are coupled with geometry and loss models. The solution domain is dis-
cretized by a structured grid. The flow solver uses a finite volume method with AUSM (Advection Upstream Splitting
Method) type flux [7]. Initial tests show, that developed solver is able to predict well the radial distributions of flow param-
eters upstream and downstream the considered blade cascades at short CPU time compared to fully three-dimensional
simulations. The used finite volume method has advantage over previous methods based on a streamlines and stream func-
tions, which did not work well for transonic speeds and they did not generally guarantee the conservation of mass,
momentum and energy.
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2. Flow model

Consider the system of cylindrical coordinates r;u and z, which is fixed to a single blade row of axial turbine. The z axis
coincides with the axis of the cascade. The cascade can rotate around its axis with angular velocity x. The Euler equations in
the considered system of coordinates read
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where the symbol t denotes time, q density, v r ;vu and vz velocity components, e the total energy per unit volume and p the
pressure. We consider the steady solution, therefore we might take a single blade passage (i.e. blade-to-blade channel
together with sufficiently long upstream and downstream parts) as the solution domain D. The ranges for the coordinates
z and r are defined by the domain Dzr (projection of D onto zr plane). The range for the coordinate u is limited by u1ðr; zÞ
and u2ðr; zÞ. The idea of circumferential averaging is equivalent to the finite volume discretization of D with a single layer
of cells in the tangential direction. Consider an arbitrary cell of this discretization defined by V � Dzr and
u1ðr; zÞ < u < u2ðr; zÞ. The integral form of the Eq. (1) then readsZZ
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Swapping the derivative and the integration with respect to u and using the mean value theorem for the left hand side of the
Eq. (2) yieldsZZ
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where bðr; zÞ ¼ u2ðr; zÞ �u1ðr; zÞ is the width of blade channel and V is the finite volume of the discretization of Dzr , see

examples in the Figs. 2 or 10(b). The vectors W; F;G and H are averages of fW ; eF ; eG and eH with respect to u. The vector Fi

is the vector eF for u ¼ ui and
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is the normal vector to the surface u ¼ uiðr; zÞ. The surfaces u ¼ uiðr; zÞ coincide partly with the blade surface. Therefore we

need to apply the non-permeability condition in the form ðFi;Gi;HiÞ~ni ¼ ½0; pi~ni;0�
T on the part of u ¼ uiðr; zÞ surfaces and for

the remaining part to apply the periodicity conditions, i.e. ðF1;G1;H1Þ ¼ ðF2;G2;H2Þ,~n1 ¼~n2 and p1 ¼ p2. The non-permeabil-
ity condition yields
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The above substitution (4) can be used also in the case of periodicity conditions, where both sides turn to zero. The circum-
ferentially averaged integral form of governing equations is thereforeZZ
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