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a b s t r a c t

In this paper we introduce a discontinuous Galerkin method on polygonal meshes. This
method arises from the discontinuous Galerkin composite finite element method (DGFEM)
for source problems on domains with micro-structures. In the context of the present paper,
the flexibility of DGFEM is applied to handle polygonal meshes. We prove the a priori con-
vergence of the method for both eigenvalues and eigenfunctions for elliptic eigenvalue
problems. Numerical experiments highlighting the performance of the proposed method
for problems with discontinuous coefficients and on convex and non-convex polygonal
meshes are presented.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

In recent years people have realised the gain in flexibility coming from polygonal and polyhedral meshes, for this reason
many finite element methods have been developed to accommodate such meshes. In the continuous Galerkin setting we
have the composite finite element methods (CFEs) [1–5], the polygonal finite element methods (PFEMs) [6,7], the extended
finite element method (XFEM) [8] and the virtual finite element method (VFEM) [9]. On the other hand in the discontinuous
Galerkin (DG) setting we have the interior penalty methods on polygonal and polyhedral meshes [10], the agglomeration-
based method [11–13] and the discontinuous Galerkin composite finite element methods (DGCFEMs) [14].

One clear advantage in using general polygonal/polyhedral elements is the possibility to mesh complicated shapes and
even small geometrical details in the domain. In this direction both the continuous Galerkin CFE method [1–5] and the dis-
continuous Galerkin CFE method [15,14,16] are capable to solve problems on domains with micro-structures. It is interesting
to notice that on domains without small features or micro-structures, DGCFEM [14] and the interior penalty methods on
polygonal and polyhedral meshes [10] are closely related. From an a priori convergence point of view, the main difference
between these two methods is the way in which degeneration of edges or faces in the mesh is treated in the theory.

In this work we would like to study the use of polygonal/polyhedral meshes for eigenvalue problems. In our opinion, this
seems the natural next step since so many methods for linear/non-linear source problems are already available for such
meshes. Comparing the extensions of continuous and discontinuous Galerkin methods to general polygonal/polyhedral
meshes, clearly in the DG setting the extension is simpler. For this reason we adopted DG as our starting point. Among
all the available DG methods, we choose to apply DGCFEM to eigenvalue problems since hp-adaptive schemes are already
available for this method [16,15] and it should be possible in a further work to apply such technologies to eigenvalue prob-
lems on general polygonal/polyhedral meshes as well. Moreover, since DGCFEM has been developed to address problems on
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domains with micro-structures, also the present analysis can be applied to eigenvalue problems on domain with micro-
structures using polygonal/polyhedral meshes.

In order to keep the analysis simple, we consider the following model problem: find the eigenpairs ðk; uÞ such that

�Du ¼ ku in X;

u ¼ 0 on @X:

�
ð1Þ

Here, X is a bounded, connected polygonal domain in R2, with boundary @X. In the rest of the paper we are going to assume
that the meshes are constituted by polygonal elements.

The outline of the paper is as follows. In Section 2 we describe how the finite element space on polygonal meshes is con-
structed. In Section 3 we introduce the discrete version of problem (1) and the discontinuous Galerkin method. In the fol-
lowing Section 4 the a priori analysis is presented and in Section 5 the numerical results are presented. Finally in
Section 6 some concluding remarks are collected.

2. Construction of the composite finite element spaces on polygonal meshes

In this section, we describe the construction of the CFE space on a polygonal mesh. The method is inspired by [14], where
a similar construction for complicated domain with small features is presented.

The construction of the CFE space takes advantage of two meshes: the polygonal mesh T CFE and the mesh T h constructed
splitting the polygons in T CFE into triangles. By construction the mesh T h is finer than the mesh T CFE, in the sense that each
element of T h has a unique father element in T CFE such that the father element contains the children element.

2.1. Finite element spaces

We start defining the discontinuous Galerkin finite element space on the mesh T h, assuming that the polynomial degree
is uniformly distributed over the mesh:

VðT h; pÞ ¼ fu 2 L2ðXÞ : ujj 2 PpðjÞ;8j 2 T hg;

where PpðjÞ denotes the set of polynomials of degree at most p P 1 defined over the general polygon j. The extension to
variable polynomial degrees follows in a natural fashion.

In order to be able to construct the finite element space on the polygonal mesh, we have to assume that the polynomial
degree p of the polygonal elements in T CFE is the same as the polynomial degree of the elements of T h. In the case of variable
polynomial degrees, it is necessary to assume that the polynomial degree of each polygonal element is the same as the poly-
nomial degree of all the children elements.

For each polygonal element j 2 T CFE we define ĵ as the smallest rectangle containing j with edges parallel to the axes.
Then the polynomial space PpðjÞ is defined to contain the polynomial functions in PpðĵÞ restricted to the support of the ele-
ment j. So, the DG finite element space on the mesh T CFE is constructed gluing together the polynomial spaces PpðjÞ for all
elements j 2 T CFE, i.e.;

VðT CFE;pÞ ¼ u 2 L2ðXÞ : ujj 2 PpðjÞ;8j 2 T CFE

� �
:

In view of the definition of VðT CFE; pÞ, it is clear that the DG space VðT h; pÞ on the finer mesh simplify the construction of
the finite element functions on polygons. Any polynomial function in PpðjÞ for any elements j 2 T CFE can be defined as a
linear combination of the basis functions living on the children of j, see [14, Section 8]. So, any integral on polygonal ele-
ments or on edges of polygonal elements can be computed as an integral on either elements or edges of the mesh T h. This
is how the method assembles the discrete problem on polygonal meshes.

3. Composite discontinuous Galerkin finite element method

In this section, we introduce the hp-version of the (symmetric) interior penalty DGCFEM for the numerical approximation
of (1). To this end, we first introduce the following notation.

We denote by FI
CFE

the set of all interior edges of the partition T CFE of X, and by FB
CFE

the set of all boundary edges of T CFE.
Furthermore, we define F ¼ FI

CFE
[ FB

CFE
. The boundary @j of an element j and the sets @j n @X and @j \ @X will be

identified in a natural way with the corresponding subsets of F . Let jþ and j� be two adjacent elements of T CFE, and x
an arbitrary point on the interior edge F 2 FI

CFE
given by F ¼ @jþ \ @j�. Furthermore, let v and q be scalar- and vector-valued

functions, respectively, that are smooth inside each element j�. By ðv�;q�Þ, we denote the traces of ðv ;qÞ on F taken from
within the interior of j�, respectively. Then, the averages of v and q at x 2 F are given by

ffvgg ¼ 1
2
ðvþ þ v�Þ; ffqgg ¼ 1

2
ðqþ þ q�Þ;

respectively. Similarly, the jumps of v and q at x 2 F are given by

svt ¼ vþnjþ þ v�nj� ; sqt ¼ qþ � njþ þ q� � nj� ;
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