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a b s t r a c t

We consider the discretization and solution of eigenvalue problems of elliptic operators
with random coefficients. For solving the resulting systems of equations we present a
new and efficient spectral inverse iteration based on the stochastic Galerkin approach with
respect to a polynomial chaos basis. The curse of dimensionality inherent in normalization
over parameter spaces is avoided by a solution of a non-linear system of equations defining
the Galerkin coefficients. For reference we also present an algorithm for adaptive stochastic
collocation. Functionality of the algorithms is demonstrated by applying them on four
examples of a given model problem. Convergence of the Galerkin-based method is
analyzed and the results are tested against the collocated reference solutions and
theoretical predictions.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Over the last decade numerical solution of stochastic partial differential equations has become a well-established field.
The solution methods can broadly speaking be divided into intrusive and non-intrusive ones. The same division applies to sto-
chastic eigenvalue problems as well. In this paper we focus on stochastic Galerkin method (intrusive) for a multiparametric
problem. The benchmark method is a stochastic collocation algorithm (non-intrusive) by Andreev [1], a variant of which is
also discussed here.

Stochastic eigenvalue problems (SEVP) arise in many applications. Ultimately our interests are in engineering applica-
tions, in particular effects of material models and manufacturing imperfections of geometric nature. SEVPs have attracted
a lot of attention recently and various algorithms have been suggested for computing approximate eigenpairs: [2–4], espe-
cially the power iteration earlier in 2014 [5].

It should be noted that in the context of this paper it is assumed that the problems are positive definite and the eigenpair
of interest is the ground state, that is, the one with the smallest simple eigenvalue. For linear elasticity the latter assumption
does not hold and the algorithms must be extended to invariant subspaces in the future.

In stochastic eigenvalue problems one must address two central issues that do not arise in stochastic source problems:
first, the eigenmodes are defined only up to a sign, and second, the eigenmodes must be normalized over the whole param-
eter space, that is, every realization must be normalized in the same way. The first issue is dealt with here by choosing a
model problem where it is guaranteed that the eigenmode of interest does not change sign over the computational domain
thus making global orientation over all realizations possible. The second issue is more problematic. The immediate solution

http://dx.doi.org/10.1016/j.amc.2014.12.112
0096-3003/� 2015 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: harri.hakula@aalto.fi (H. Hakula), vesa.kaarnioja@aalto.fi (V. Kaarnioja), mikael.j.laaksonen@aalto.fi (M. Laaksonen).

1 We acknowledge CSC IT Center for Science Ltd. for the allocation of computational resources (project ay6302). The author has been supported by the
Academy of Finland (decision 267789).

Applied Mathematics and Computation 267 (2015) 664–681

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.12.112&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.12.112
mailto:harri.hakula@aalto.fi
mailto:vesa.kaarnioja@aalto.fi
mailto:mikael.j.laaksonen@aalto.fi
http://dx.doi.org/10.1016/j.amc.2014.12.112
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


is to ensure normalization over a quadrature, but regrettably this leads to the curse of dimensionality raising its ugly head
and thus blurring the lines between collocation and Galerkin approaches. The main result of this paper is a new spectral
inverse iteration based on efficient, though approximate, normalization procedure which avoids the curse of dimensionality
by avoiding numerical integration via a solution of a non-linear system of equations defining the Galerkin coefficients. The
effectiveness of this algorithm is demonstrated in the numerical experiments. The observed convergence rates in H1

0

seminorm and L2 norm are in line with theoretical predictions. It should be noted that the running times of the experiments
on standard hardware are measured in minutes for Galerkin in contrast to hours or even days for collocation. The results
indicate that future work in Galerkin schemes is warranted.

The rest of the paper is organized as follows: First the abstract problem is introduced in Section 2; The representation of
the random input is given in Section 3; Section 4 is central to our discussion, both solution methods, collocation and spectral
inverse iteration, are presented; Numerical experiments are discussed in Section 5 and finally conclusions are drawn in
Section 6. Some useful definitions are given in the Appendix as well as the proof for the convergence of the spectral inverse
iteration.

2. Problem formulation

The algorithms presented in this paper are designed for the following generalized stochastic matrix eigenvalue problem:

AðnÞuðnÞ ¼ lðnÞBuðnÞ; ð1Þ

with the eigenvector normalized as

kuðnÞk2
B :¼ uðnÞTBuðnÞ ¼ 1: ð2Þ

Here, the stochastic dependence is represented by a vector of mutually independent random variables n ¼ ðn1; n2; . . .Þ. The
random matrix AðnÞ and the deterministic matrix B are assumed to be symmetric and positive definite. Furthermore, we will
assume the dependence of the matrix A on the random vector n to take the following form

AðnÞ ¼ Að0Þ þ Að1Þn1 þ Að2Þn2 . . . ð3Þ

with sufficient convergence of the series of deterministic matrices fAðmÞgmP1. A similar expression with respect to an ortho-
normal polynomial chaos basis is also applicable.

Typically, we are interested in eigenvalue problems of infinite-dimensional operators with random coefficients. In this
case, the stochastic matrix eigenvalue problem (1) should be considered as a finite-dimensional approximation of the origi-
nal problem. Such an approximation can be acquired, for instance, with the help of the Karhunen–Loève expansion and a
suitable spatial discretization. We will explain this procedure in more detail by means of a suitable model problem.

2.1. Model problem

Let ðX;F ; PÞ be a probability space, X being the set of outcomes, F a r-algebra of events, and P a probability measure
defined on X. We denote by L2

PðXÞ the space of square integrable random variables on X. Furthermore, for a Hilbert space
H we define the Bochner space

L2
PðX;HÞ :¼ u : X! H

Z
X
kuðxÞk2

HdPðxÞ <1
����

� �
:

In the case that H is a separable Hilbert space, this admits the decomposition L2
PðX;HÞ ’ L2

PðXÞ � H.
Following the notational conventions from [1], we will take the eigenvalue problem of a diffusion operator with a random

diffusion coefficient as our model problem. Let D � Rn be a bounded domain with a sufficiently smooth boundary and
assume that the diffusion coefficient is a random field a : X� D! R. The diffusion coefficient is assumed to be strictly uni-
formly positive and uniformly bounded, i.e., for some positive constants amin and amax it holds that

P x 2 X : amin 6 essinf
x2D

aðx; xÞ 6 esssup
x2D

aðx; xÞ 6 amax

� �
¼ 1: ð4Þ

We now formulate the model problem as: find functions l : X! R and u : X� D! R such that the equations

�r � ðaðx; �Þruðx; �ÞÞ ¼ lðxÞuðx; �Þ in D

uðx; �Þ ¼ 0 on @D

�
ð5Þ

hold P-almost surely.

2.2. Spectra of deterministic realizations

For each fixed x 2 X the eigenvalue problem (5) reduces to a single deterministic eigenvalue problem for which the var-
iational form is given by: find lðxÞ 2 R and uðx; �Þ 2 H1

0ðDÞ such that
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