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a b s t r a c t

Integration and differentiation of non-integer orders for N-dimensional physical lattices
with long-range particle interactions are suggested. The proposed lattice fractional deriv-
atives and integrals are represented by kernels of lattice long-range interactions, such that
their Fourier series transformations have a power-law form with respect to components of
wave vector. Continuous limits for these lattice fractional derivatives and integrals give the
continuum derivatives and integrals of non-integer orders with respect to coordinates. Lat-
tice analogs of fractional differential equations that include suggested lattice differential
and integral operators can serve as an important element of microscopic approach to non-
local continuum models in mechanics and physics.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The main approaches to describe nonlocal properties of media and materials are a macroscopic approach based on the
continuum mechanics [1–5], and a microscopic approach based on the lattice mechanics [6–9]. Continuum mechanics can
be considered as a continuous limit of lattice dynamics, where the sizes of continuum elements are much larger than the
distances between lattice particles.

Theory of derivatives and integrals of non-integer orders [10–19] has a long history and it goes back to the famous sci-
entist such as Leibniz, Riemann, Liouville, Letnikov, Weyl, Riesz and other. Fractional calculus and fractional differential
equations have a wide application in different areas of physics [20–31]. Fractional integro-differential equations are very
important to describe processes in nonlocal continua and media. Fractional integrals and differential operators with respect
to coordinates allow us to describe continuously distributed system with power-law type of nonlocality. Therefore fractional
calculus serve as a powerful tool in physics and mechanics of nonlocal continua. As it was shown in [41,42,25], the fractional
differential equations for nonlocal continua can be directly connected to models of lattice with long-range interactions of
power-law type. Interconnection between the equations for lattice with long-range interactions and the fractional differen-
tial equations for continuum is proved by special transform operator that includes a continuous limit, and the Fourier series
and integral transformations [41–44]. In [55–59] this approach has been applied to lattice models of fractional nonlocal con-
tinua in one-dimensional case only. In this paper we propose a lattice fractional calculus that allows us to extend these lat-
tice models to N-dimensional case.

Dynamics of physical lattices and discretely distributed systems with long-range interactions has been the subject of
investigations in different areas of science. Effect of synchronization for nonlinear systems with long-range interactions is
described in [32]. Non-equilibrium phase transitions for systems with long-range interactions are considered in [33]. Sta-
tionary states for fractional systems with long-range interactions are discussed in [46,34,35]. The evolution of soliton-like

http://dx.doi.org/10.1016/j.amc.2014.11.033
0096-3003/� 2014 Elsevier Inc. All rights reserved.

E-mail address: tarasov@theory.sinp.msu.ru

Applied Mathematics and Computation 257 (2015) 12–33

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.11.033&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.11.033
mailto:tarasov@theory.sinp.msu.ru
http://dx.doi.org/10.1016/j.amc.2014.11.033
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


and breather-like structures in one-dimensional lattice of coupled oscillators with the long-range power are considered in
[36]. Kinks in the Frenkel–Kontorova model with long-range particle interactions is studied in [37]. In statistical mechanics
and nonlinear dynamics, solvable models with long-range interactions are described in detail in the reviews [38–40]. Differ-
ent discrete systems and lattice with long-range interactions and its continuous limits are considered in [23,25]. It is impor-
tant that lattice models with long-range interactions of power-law type can lead to fractional nonlocal continuum models in
the continuous limit [41,42,25], Nonlocal continuum mechanics can be considered as a continuous limit of mechanics of lat-
tice with long-range interactions, when the sizes of continuum element are much larger than the distances between particles
of lattice.

It should be note that a calculus of operators of integer orders for physical lattice models has been considered in the
papers [48–50]. This lattice calculus of integer order is defined on a general triangulating graph by using discrete field quan-
tities and differential operators roughly analogous to differential forms and exterior differential calculus. A scheme to derive
lattice differential operators of integer orders from the discrete velocities and associated Maxwell–Boltzmann distributions
that are used in lattice hydrodynamics has been suggested in the articles [51,52]. In this paper to formulate a lattice frac-
tional calculus, we use other approach that is based on models of physical lattices with long-range inter-particle interactions
and its continuum limit that are suggested in [41,42,25] (see also [43–47,55–59]).

In this paper, we propose lattice analogs of differentiation and integration of non-integer orders based on N-dimensional
generalization of the lattice approach suggested in [41,42,25]. A general form of lattice fractional derivatives and integrals
that gives continuum derivatives and integrals of non-integer orders in continuous limit is suggested. These continuum frac-
tional operators of differentiations and integrations can be considered as fractional derivatives and integrals of the Riesz type
with respect to coordinates.

2. Lattice fractional differential operators

2.1. Lattice fractional partial derivatives

Let us consider an unbounded physical lattice characterized by N non-coplanar vectors ai; i ¼ 1; . . . ;N, that are the short-
est vectors by which a lattice can be displaced and be brought back into itself. For simplification, we assume that
ai; i ¼ 1; . . . ;N, are mutually perpendicular primitive lattice vectors. We choose directions of the axes of the Cartesian coor-
dinate system coincides with the vector ai. Then ai ¼ ai ei, where ai ¼ jaij and ei; i ¼ 1; . . . ;N, is the basis of the Cartesian coor-
dinate system for RN . This simplification means that the lattice is a primitive N-dimensional orthorhombic Bravais lattice.
The position vector of an arbitrary lattice site is written rðnÞ ¼

PN
i¼1ni ai, where ni are integer. In a lattice the sites are num-

bered by n, so that the vector n ¼ ðn1; . . . ;nNÞ can be considered as a number vector of the corresponding lattice particle. We
assume that the equilibrium positions of particles coincide with the lattice sites rðnÞ. Coordinates rðnÞ of lattice sites differs
from the coordinates of the corresponding particles, when particles are displaced relative to their equilibrium positions. To
define the coordinates of a particle, we define displacement of n-particle from its equilibrium position by the scalar field
uðnÞ, or the vector field uðnÞ ¼

PN
i¼1uiðnÞei, where the vectors ei ¼ ai=jaij form the basis of the Cartesian coordinate system.

The functions uiðnÞ ¼ uiðn1; . . . ;nNÞ are components of the displacement vector for lattice particle that is defined by
n ¼ ðn1; . . . ;nNÞ. In many cases, we can assume that uðnÞ belongs to the Hilbert space l2 of square-summable sequences to
apply the Fourier transformations. For simplification, we will consider differential and integral operators for the lattice func-
tions u ¼ uðnÞ ¼ uðn1; . . . ; nNÞ. All transformations can be easily generalized to the case of the vector functions.

Let us give a definition of lattice partial derivative of arbitrary positive real order a in the direction ei ¼ ai=jaij in the
lattice.

Definition 1. A lattice fractional partial derivative is the operator D�L
a
i

� �
such that

D�L
a
i

� �
u ¼ 1

aa
i

Xþ1
mi¼�1

K�a ðni �miÞuðmÞ; ði ¼ 1; . . . ;NÞ; ð1Þ

where a 2 R;a > 0, m 2 Z, and the interaction kernels K�a ðn�mÞ are defined by the equations
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where 1F2 is the Gauss hypergeometric function [63]. The parameter a > 0 will be called the order of the lattice
derivative (1).

Let us explain the reasons for definition the interaction kernels K�a ðn�mÞ in the forms (2), (3), and describe some
properties of these kernels.
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