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a b s t r a c t

The paper revisits the convolution operator and addresses its generalization in the perspec-
tive of fractional calculus. Two examples demonstrate the feasibility of the concept using
analytical expressions and the inverse Fourier transform, for real and complex orders.
Two approximate calculation schemes in the time domain are also tested.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Fractional calculus (FC) is the scientific area that generalizes the standard integral and derivative operators up to real and
complex orders. The historical origin of FC goes back to 1695, when L’Hospital asked about the meaning of D1

2y and Leibniz
replied with some comments about the apparent paradox. Many important mathematician developed the topic during three
centuries [1–6], but only in the last decades applied sciences recognized the importance of the tool to model dynamical phe-
nomena with long range memory effects [7–13]. Significant progresses took place in numerical analysis and signal process-
ing [14–19], but many important aspects still remain to be explored. For example, the interpretation of the fractional
derivative or integral is still the object of strong debate and several perspectives were formulated [20–32].

The concepts behind the generalization of the concept of derivatives and integrals can be applied with other operators.
Several studies addressed the fractional convolution in the scope of the fractional Fourier transform [33–40]. However, the
study of convolution in signal analysis having in mind the FC tools has not received significant attention. This paper
addresses the topic of generalizing that operator and evaluating its practical implementation in signal processing.

Bearing these ideas in mind, the paper is organized as follows. Section 2 discusses the convolution in the perspective of
FC. Several examples are studied and two approximate techniques for its calculation are proposed. Finally, Section 3 outlines
the main conclusions and points towards future work.

2. Convolution in the perspective of fractional calculus

The convolution of two signals f ðtÞ and gðtÞ is defined as:

Cðf ; gÞðtÞ ¼ ðf � gÞðtÞ ¼
Z þ1

�1
f ðsÞgðt � sÞds ¼

Z þ1

�1
f ðt � sÞgðsÞds; ð1Þ

where t denotes time, � is the standard symbol for the operator and Cð�Þ is the notation adopted in the sequel.
When f and g are defined for t P 0 expression (1) reduces to:

Cðf ; gÞðtÞ ¼ ðf � gÞðtÞ ¼
Z t

0
f ðsÞgðt � sÞds: ð2Þ

http://dx.doi.org/10.1016/j.amc.2014.09.082
0096-3003/� 2014 Elsevier Inc. All rights reserved.

E-mail address: jtm@isep.ipp.pt

Applied Mathematics and Computation 257 (2015) 34–39

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.09.082&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.09.082
mailto:jtm@isep.ipp.pt
http://dx.doi.org/10.1016/j.amc.2014.09.082
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


Convolution is usually interpreted as the overlapping area between the two functions when one of them is flipped and
shifted by t.

The product of the Laplace transforms of the signals, FðsÞ ¼ Lff ðtÞg and GðsÞ ¼ LfgðtÞg, is related with convolution by the
property:

Cðf ; gÞðtÞ ¼ L�1fFðsÞ � GðsÞg; ð3Þ

where s denotes the Laplace variable.
When f ¼ g expression (3) reduces to:

C�ðf ÞðtÞ ¼ Cðf ; f ÞðtÞ ¼ L�1fF2ðsÞg: ð4Þ

Repeating the procedure leads to the expression:

Cn
� ðf ÞðtÞ ¼ Cðf ; C

n�1
� ðf ÞÞðtÞ ¼ L

�1fF2nðsÞg; ð5Þ

where Cn
�ðf ÞðtÞ represents the n 2 N order convolution of f with itself.

Within the scope of FC Eq. (5) can be extended to order c 2 C:

Ccðf ; gÞðtÞ ¼ L�1f FðsÞ � GðsÞ½ �cg ð6Þ

and

Cc�ðf ÞðtÞ ¼ L
�1fF2cðsÞg ð7Þ

We shall denote the operation by generalized convolution.
Expression (6) means that if FðsÞ ¼ 1

s and GðsÞ ¼ H
1
cðsÞ, then we have:

L�1 1
sc � HðsÞ
� �

¼ Ccðuc; hÞðtÞ ¼ D�cfhðtÞg; ð8Þ

where ucðtÞ ¼ L�1 1
sc
� �

and hðtÞ ¼ L�1fHðsÞg.
In this line of thought, (8) establishes a relationship between fractional integral D�c and generalized convolution Cc. This

result may shed some extra light into the interpretation of fractional derivatives [29–31]. Recently it was proposed the phys-
ical interpretation of a fractional trajectory as being an average over an ensemble of stochastic trajectories [41,42]. Therefore,
the convolution operation can be adopted in the description of physical phenomena involving strong discontinuities, that
occur in phenomena such as collisions, up to smooth evolutions, usual in systems with slow dynamics.

Let us consider the following example [43] with ReðsÞ > maxð�a;�bÞ and t P 0:

GðsÞ ¼ 1
sþ a

� 1
sþ b

ð9Þ

L�1fGaðsÞg ¼ Caðe�at; e�btÞ ¼
ffiffiffiffi
p
p

CðaÞ
t

a� b

� �a�1
2

e�
aþb

2 t Ia�1
2

a� b
2

t
� �

ð10Þ

where a 2 R; Cð�Þ denotes the Gamma function and Iað�Þ is the modified Bessel function of the first kind.
For the integer orders a ¼ 1 and a ¼ 2 expression (10) simplifies to

L�1fGðsÞg ¼ Cðe�at; e�btÞ ¼ e�at � e�bt

b� a
ð11Þ

L�1fG2ðsÞg ¼ C2ðe�at; e�btÞ ¼ 1

ða� bÞ2
t þ 2

a� b

� �
e�at þ t � 2

a� b

� �
e�bt

	 

ð12Þ

Fig. 1 shows the impulse response of expression (10) for a ¼ 1
2 ;1;

3
2 ;2

� �
.

According with (8) the expressions can be interpreted not only as standard inverse Laplace results, but also as fractional

integral D�c e�at�e�bt

b�a

� �
.

We observe a considerable variation of the charts for low values of a, particularly at the initial transient, in opposition
with a more conservative behavior for larger values of a and for steady-state.

In the example expression (10) was used and, therefore, the generalized convolution was not calculated explicitly. There-
fore, in spite of the straightforward generalization, it remains the problem of calculation for the cases where a closed form
solution is not available.

Let us suppose a second example with the sincð�Þ function:

FfPaðtÞg ¼
sinðxTÞ

xT

	 
a

¼ sincaðxTÞ ð13Þ

where a 2 R, and x and Ff�g denote the Fourier variable and operator, respectively.
For a ¼ f0;1;2;3g we obtain the Dirac, rectangular, triangular and parabolic functions:
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