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a b s t r a c t

In this paper, a chaos control algorithm for a class of piece-wise continuous chaotic
systems of fractional order, in the Caputo sense, is proposed. With the aid of Filippov’s
convex regularization and via differential inclusions, the underlying discontinuous initial
value problem is first recast in terms of a set-valued problem and hence it is continuously
approximated by using Cellina’s Theorem for differential inclusions. For chaos control, an
active control technique is implemented so that the unstable equilibria become stable.
As example, Shimizu–Morioka’s system is considered. Numerical simulations are obtained
by means of the Adams–Bashforth–Moulton method for differential equations of
fractional-order.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Several real-life systems show non-smooth physical properties (for instance dry friction, forced vibration brake processes
with locking phase, stick, and slip phenomena) which can be suitably modeled by introducing some kind of discontinuity.
Moreover, anomalous processes (for instance in non-standard materials) exhibit memory and hereditary properties and
derivatives of fractional order are an effective tool to keep into account these phenomena.

Thus, fractional discontinuous systems provide a logical and attractive link between systems of fractional order and
discontinuous systems.

Chaos control in continuous fractional-order systems, have been realized for many systems such as: Lorenz system, Chua
system, Rossler system, Chen system, Liu system, Rabinovich–Fabrikant system, Coullet system, dynamos system, Duffing
system, Arneodo system, Newton–Leipnik system and so on (few of the numerous related papers are [1–5]).

Anyway, because of the lack of numerical methods specifically devised for fractional differential equations (FDEs) with
discontinuous right-hand side, discontinuous systems of fractional-order have not been rigorously studied.

In [6] it was investigated the behavior of some classical methods for discontinuous FDEs under a set-valued regularization
into the Filippov’s framework [7,8]; in particular, the chattering-free behavior of the generalization of the implicit Euler
scheme was showed.

Solving problems resulting from the Filippov set-valued regularization is however not a simple task and requires, in
most cases, to recast the original problem in a linear complementarity problem whose numerical solution is often very
demanding.
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A possible way to remove these obstacles, is to approximate continuously the underlying initial value problem by
modeling the discontinuous system according to the algorithm presented in [9]. In this way the chaos control problem
becomes a standard chaos control of continuous systems of fractional-order.

In this paper we focus on discontinuous problems in which the right-hand side is a piece-wise continuous (PWC) function
f : Rn ! Rn having the following form

f ðxðtÞÞ ¼ gðxðtÞÞ þ KxðtÞ þ AðxðtÞÞsðxðtÞÞ; ð1Þ

where g : Rn ! Rn is a nonlinear and (at least) continuous function, s : Rn ! Rn a piece-wise continuous function
sðxÞ ¼ ðs1ðx1Þ; s2ðx2Þ; . . . ; snðxnÞÞT with si : R! R; i ¼ 1;2; . . . ;n real piece-wise constant functions, A 2 Rn�n a square matrix
of real continuous functions and K a square real matrix, representing the linear part of f.

Discontinuous systems of fractional-order are modeled in this paper by the following initial value problem (IVP)

Dq
�xðtÞ ¼ f ðxðtÞÞ; xð0Þ ¼ x0; t 2 I ¼ ½0;1Þ; ð2Þ

where f is the PWC function defined by (1) and, for q ¼ ðq1; q2; . . . ; qnÞ;D
q
�xðtÞ ¼ ðD

q1
� x1ðtÞ;Dq2

� x2ðtÞ; . . . ;Dqn
� xnðtÞÞ denotes the

vector of the differential operator of fractional order qi applied to each component of xðtÞ.
In the past several alternative definitions have been proposed to provide valuable generalizations of differential operators

to non integer order. Although the approach named as Riemann–Liouville is the most important both for theoretical and
historical reasons, for practical applications the definition due to Caputo [10] is the most appropriate and useful. Indeed,
the Caputo’s fractional derivative has the considerable advantage of allowing to couple differential equations with classical
initial conditions of Cauchy type as in (2) which not only have a clearly interpretable physical meaning [11] but can also be
measured to proper initializing the simulation.

Since chaotic fractional-order systems are usually modeled with subunit fractional orders 0 < qi 6 1; i ¼ 1;2; . . . ;n, the
Caputo’s differential operator of order qi, with respect to the starting point 0, is defined as [10,12,13]

Dqi
� xiðtÞ ¼

1
Cð1� qiÞ

Z t

0
ðt � sÞ�qi

d
dt

xiðsÞds;

where CðzÞ is the Euler’s Gamma function.
Regarding the matrix A, the following assumption is considered.
(H1) AðxÞsðxÞ is discontinuous in at least one of his components.
The discontinuity impediment can be avoided by using the Filippov’s technique [7] to convert a single valued (discontin-

uous) problem into a set-valued one. Then, via Cellina’s Theorem for differential inclusions [14,15], set-valued functions can
be continuously approximated in small neighborhoods.

The continuous approximation algorithm proposed in this paper regards the discontinuous functions si being valid for a
large class of functions such as the Heaviside function, the rectangular function (as difference of two Heaviside functions), or
the signum, one of the most encountered PWC functions in practical applications.

Standard techniques can hence be applied to the continuous approximation to device an active control in order to sup-
press the appearance of chaos.

The paper is organized as follows: Section 2 deals with the approximation of the PWC function (1) and shows how the IVP
(2) can be transformed into a continuous problem. Section 3 concerns the investigation of stability issues of the approxi-
mated continuous problem. In Section 4 the chaos control obtained by stabilizing unstable equilibria of PWC systems of frac-
tional-order is investigated. The application of these techniques to the fractional-order variant of Shimizu–Morioka’s system
(4) is hence analyzed in Section 5.

2. Continuous approximation of PWC systems of fractional-order

Notation 1. Let M be the discontinuity set of f, generated by the discontinuity points of the components si.

Example 2.1. For the linear PWC function f : R! R

f ðxÞ ¼ 2� 3sgnðxÞ; ð3Þ

the discontinuity set isM¼ f0g and determines on R the continuity sub-domains D1 ¼ ð�1; 0� and D2 ¼ ½0;1Þ (see Fig. 1).
The example of PWC systems analyzed in this paper, is the fractional variant of the chaotic Shimizu–Morioka’s three-

dimensional system [16,17]

Dq1
� x1 ¼ x2;

Dq2
� x2 ¼ ð1� x3Þsgnðx1Þ � ax2;

Dq3
� x3 ¼ x2

1 � bx3;

ð4Þ

with a ¼ 0:75 and b ¼ 0:45. Here gðxÞ ¼ ð0;0; x2
1Þ and
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