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a b s t r a c t

A reaction diffusion equation with a Caputo fractional derivative in time and with various
boundary conditions is considered. Under some conditions on the initial data, we show that
solutions may experience blow-up in a finite time. However, for realistic initial conditions,
solutions are global in time. Moreover, the asymptotic behavior of bounded solutions will
be analyzed.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the reaction diffusion system
cDau� Du ¼ �uð1� uÞ; x 2 X; t > 0; ð1:1Þ

supplemented with:
– the homogeneous boundary condition

Bu ¼ 0; x 2 @X; t > 0; ð1:2Þ

where Bu ¼ uj@X or Bu ¼ @u
@mj@X, m the outward normal to @X (if X ¼ RN , the condition Bu ¼ 0 is omitted but we add

limjxj!1uðx; tÞ ¼ 0),
- and with the initial condition

uðx;0Þ ¼ u0ðxÞ; x 2 X; ð1:3Þ

the initial data u0ðxÞ is a given positive and bounded function. Here d > 0 is the diffusion coefficient and cDa is the time frac-
tional Caputo derivative of order 0 < a < 1 defined by

cDauðx; tÞ ¼ 1
Cð1� aÞ

Z t

0

@u
@s
ðx; sÞðt � sÞ�a ds

for a function u differentiable in the time variable [4,10].
Our paper is motivated by the recent one of Nakagawa, Sakamoto and Yamamoto [6] in which they raised the question of

global solutions to the equation
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cDau ¼ �uð1� uÞ; t > 0: ð1:4Þ

Their question has been solved positively by Hnaien, Kellil and Lassoued [3]. Our problem (1.1)–(1.3) is a natural extension of
(1.4). We will prove the existence of globally bounded solutions as well as blowing-up solutions according to the condition
imposed on the initial data. Let us mention that with the change of variable v :¼ 1� u, (1.1) is transformed to the KPP-Fisher
equation for both the homogeneous Neumann boundary condition or the case of a space variable in the Euclidean space. One
may expect an analysis similar to the one for the KPP–Fisher equation modulo the influence of the time fractional Caputo
derivative; however for the Dirichlet boundary condition, v has to satisfy v j@X ¼ 1.

2. Preliminary results

As it is now known, the mild solution to problem (1.1)–(1.3) can be written, in the case of a bounded domain, into the
form

uðtÞ ¼ Eað�taAÞu0 þ a
Z t

0
sa�1E0að�saAÞf ðuðt � sÞÞds; ð2:1Þ

where EaðzÞ is the Mittag–Leffler function

EaðzÞ ¼
X1
n¼0

zn

Cðnaþ 1Þ ;

the linear operator Eað�taAÞ in (2.1), where A is the L2 realization of the Laplacian �D, is given by the standard operator
calculus for self-adjoint operators, and we have set f ðuÞ ¼ uðu� 1Þ.

We have the two important inequalities

kEað�taAÞu0kL1 6 ku0kL1 ; ð2:2Þ

and

kE0að�taAÞu0kL1 6
1

aCðaÞ ku0kL1 : ð2:3Þ

In the case of RN , the integral form is

uðx; tÞ ¼
Z

RN
Sa;1ðx� y; tÞdyþ

Z t

0

Z
RN

Gaðx� y; t � sÞf ðuðx; sÞÞdsdx; ð2:4Þ

where

Sa;1ðx; tÞ ¼
1

ð2pÞN
Z

RN
eipxEa;1ð�jpj2taÞdp

and

Gaðx; tÞ ¼
ta�1

ð2pÞN
Z

RN
eipxEa;að�jpj2taÞdp;

where

Ea;aðzÞ ¼
X1
k¼1

zk

Cðkaþ aÞ :

� Existence of local solutions.

Theorem 2.1. Assume that u0 is continuous. Then problem (1.1)–(1.3) admits a local mild solution u 2 Cð½0; Tmax½;CðDÞÞ with the
alternative:

– either Tmax ¼ þ1;
– or Tmax < þ1 and in this case limt!TmaxkuðtÞkL1 ¼ þ1.

Proof. We give the proof only in the case of a bounded domain; the proof for the Euclidean space is similar. For R 2 ð0;þ1Þ,
we set

B ¼ u 2 Cð½0; s�;CðDÞÞ; sup
t2½0;s�
kuðtÞ � u0k1 6 R

( )
; D ¼ X or RN; ð2:5Þ

where s will be specified later.
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