ARTICLE IN PRESS

[Applied Mathematics and Computation xxx \(2014\) xxx–xxx](http://dx.doi.org/10.1016/j.amc.2014.06.099)

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00963003)

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

On a time fractional reaction diffusion equation

B. Ahmad ^a, M.S. Alhothuali ^a, H.H. Alsulami ^a, M. Kirane ^{b,*}, S. Timoshin ^c

a Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box. 80203, Jeddah 21589, Saudi Arabia

^b Laboratoire de Mathématiques, Images et Applications, Pôle Sciences et Technologies, Université de La Rochelle, 23 Avenue Albert Einstein, BP 33060, 17031 La Rochelle, France

^cUniversity College London, Department of Mathematics, Gower Street, London WC1E 6BT, United Kingdom

article info

Keywords: Reaction–diffusion equation Caputo fractional derivative Global existence Blow-up

ABSTRACT

A reaction diffusion equation with a Caputo fractional derivative in time and with various boundary conditions is considered. Under some conditions on the initial data, we show that solutions may experience blow-up in a finite time. However, for realistic initial conditions, solutions are global in time. Moreover, the asymptotic behavior of bounded solutions will be analyzed.

- 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the reaction diffusion system

$$
{}^{c}D^{x}u - \Delta u = -u(1-u), \quad x \in \Omega, \ t > 0,
$$
\n
$$
(1.1)
$$

supplemented with:

– the homogeneous boundary condition

$$
Bu = 0, \quad x \in \partial \Omega, \ t > 0,
$$
\n
$$
(1.2)
$$

where $Bu = u_{|\partial\Omega}$ or $Bu = \frac{\partial u}{\partial v_{|\partial\Omega}}$, v the outward normal to $\partial\Omega$ (if $\Omega = \mathbb{R}^N$, the condition $Bu = 0$ is omitted but we add $\lim_{|x|\to\infty}u(x,t)=0$),

- and with the initial condition

$$
u(x,0) = u_0(x), \quad x \in \Omega; \tag{1.3}
$$

the initial data $u_0(x)$ is a given positive and bounded function. Here $d > 0$ is the diffusion coefficient and $^cD^x$ is the time fractional Caputo derivative of order $0 < \alpha < 1$ defined by

$$
{}^{c}D^{\alpha}u(x,t)=\frac{1}{\Gamma(1-\alpha)}\int_{0}^{t}\frac{\partial u}{\partial s}(x,s)(t-s)^{-\alpha}ds
$$

for a function u differentiable in the time variable $[4,10]$.

Our paper is motivated by the recent one of Nakagawa, Sakamoto and Yamamoto [\[6\]](#page--1-0) in which they raised the question of global solutions to the equation

⇑ Corresponding author.

E-mail address: mokhtar.kirane@univ-lr.fr (M. Kirane).

<http://dx.doi.org/10.1016/j.amc.2014.06.099> 0096-3003/© 2014 Elsevier Inc. All rights reserved.

2 B. Ahmad et al. / Applied Mathematics and Computation xxx (2014) xxx–xxx

$$
{}^{c}D^{x}u = -u(1-u), \quad t > 0. \tag{1.4}
$$

$$
\left(1.4\right)
$$

Their question has been solved positively by Hnaien, Kellil and Lassoued [\[3\].](#page--1-0) Our problem (1.1) – (1.3) is a natural extension of [\(1.4\).](#page-0-0) We will prove the existence of globally bounded solutions as well as blowing-up solutions according to the condition imposed on the initial data. Let us mention that with the change of variable $v:=1-u$, (1.1) is transformed to the KPP-Fisher equation for both the homogeneous Neumann boundary condition or the case of a space variable in the Euclidean space. One may expect an analysis similar to the one for the KPP–Fisher equation modulo the influence of the time fractional Caputo derivative; however for the Dirichlet boundary condition, v has to satisfy $v_{\text{lin}} = 1$.

2. Preliminary results

As it is now known, the mild solution to problem (1.1) – (1.3) can be written, in the case of a bounded domain, into the form

$$
u(t) = E_{\alpha}(-t^{\alpha}A)u_0 + \alpha \int_0^t s^{\alpha-1} E_{\alpha}'(-s^{\alpha}A) f(u(t-s)) ds,
$$
\n(2.1)

where $E_{\alpha}(z)$ is the Mittag–Leffler function

$$
E_{\alpha}(z)=\sum_{n=0}^{\infty}\frac{z^n}{\Gamma(n\alpha+1)},
$$

the linear operator $E_x(-t^2\mathcal A)$ in (2.1), where $\mathcal A$ is the L^2 realization of the Laplacian $-\Delta$, is given by the standard operator calculus for self-adjoint operators, and we have set $f(u) = u(u - 1)$.

We have the two important inequalities

$$
||E_{\alpha}(-t^{\alpha}A)u_0||_{L^{\infty}} \le ||u_0||_{L^{\infty}}, \tag{2.2}
$$

and

$$
\|E'_{\alpha}(-t^{\alpha}\mathcal{A})u_0\|_{L^{\infty}}\leqslant \frac{1}{\alpha \Gamma(\alpha)}\|u_0\|_{L^{\infty}}.
$$
\n(2.3)

In the case of \mathbb{R}^N , the integral form is

$$
u(x,t) = \int_{\mathbb{R}^N} S_{\alpha,1}(x-y,t) \, dy + \int_0^t \int_{\mathbb{R}^N} G_{\alpha}(x-y,t-s) f(u(x,s)) \, ds \, dx, \tag{2.4}
$$

where

$$
S_{\alpha,1}(x,t)=\frac{1}{(2\pi)^N}\int_{\mathbb{R}^N}e^{ipx}E_{\alpha,1}(-|p|^2t^{\alpha})\,dp
$$

and

$$
G_{\alpha}(x,t)=\frac{t^{\alpha-1}}{\left(2\pi\right)^N}\int_{\mathbb{R}^N}e^{ipx}E_{\alpha,\alpha}(-|p|^2t^{\alpha})\,dp,
$$

where

$$
E_{\alpha,\alpha}(z)=\sum_{k=1}^\infty \frac{z^k}{\Gamma(k\alpha+\alpha)}.
$$

Existence of local solutions.

Theorem 2.1. Assume that u_0 is continuous. Then problem [\(1.1\)–\(1.3\)](#page-0-0) admits a local mild solution $u \in C([0, T_{max}], C(\mathcal{D}))$ with the alternative:

– either $T_{max} = +\infty$; – or $T_{\text{max}} < +\infty$ and in this case $\lim_{t \to T_{\text{max}}} ||u(t)||_{I^{\infty}} = +\infty$.

Proof. We give the proof only in the case of a bounded domain; the proof for the Euclidean space is similar. For $R \in (0, +\infty)$, we set

$$
\mathcal{B} = \left\{ u \in C([0,\tau],C(\mathcal{D})), \sup_{t \in [0,\tau]} ||u(t) - u_0||_{\infty} \leqslant R \right\}, \quad \mathcal{D} = \Omega \text{ or } \mathbb{R}^N,
$$
\n(2.5)

where τ will be specified later.

Please cite this article in press as: B. Ahmad et al., On a time fractional reaction diffusion equation, Appl. Math. Comput. (2014), [http://](http://dx.doi.org/10.1016/j.amc.2014.06.099) dx.doi.org/10.1016/j.amc.2014.06.099

Download English Version:

<https://daneshyari.com/en/article/6420444>

Download Persian Version:

<https://daneshyari.com/article/6420444>

[Daneshyari.com](https://daneshyari.com)