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a b s t r a c t

The goal of the manuscript is to analyze the existence of solutions for the Caputo fractional
differential inclusion cDqxðtÞ 2 Fðt; xðtÞ; cDbxðtÞÞ with the boundary value conditions
xð0Þ ¼ 0 and xð1Þ þ x0ð1Þ ¼

R g
0 xðsÞds, such that 0 < g < 1, 1 < q � 2, 0 < b < 1 and

q� b > 1. Also, we investigate the existence of solutions for the Caputo fractional differen-
tial inclusion cDqxðtÞ 2 Fðt; xðtÞÞ such that xð0Þ ¼ a

R m
0 xðsÞds and xð1Þ ¼ b

R g
0 xðsÞds, where

0 < m, g < 1, 1 < q � 2 and a;b 2 R.
� 2014 Elsevier Inc. All rights reserved.

1. Introduction

During the last decade the fractional differential equations were developed intensively (see for example, [1–16,26] and
the references therein). On the other hand, a great attention was devoted to the fractional differential inclusions (see for
example, [17,18,20,21,24,27] and the references therein). We recall that the Riemann–Liouville fractional integral of order

a > 0 of f : ð0;1Þ ! R is Iaf ðtÞ ¼ 1
CðaÞ

R t
0 ðt � sÞa�1f ðsÞds if the right side is pointwise defined on ð0;1Þ (see [22,28,29]). The

definition of the Caputo fractional derivative is cDaf ðtÞ ¼ 1
Cðn�aÞ

R t
0

f ðnÞðsÞ
ðt�sÞa�nþ1 ds, where n ¼ ½a� þ 1 (see [22,28,29]).

We consider ðX; dÞ to be a metric space and denote by PðXÞ and 2X the class of all subsets and the class of all nonempty
subsets of X, respectively. As a result, we denote the class of all closed, bounded and compact subsets of X by PclðXÞ; PbdðXÞ
and PcpðXÞ, respectively. A mapping Q : X ! 2X is called a multifunction on X and u 2 X is called a fixed point of Q whenever
u 2 Qu ([19]). Let us consider J ¼ ½0;1�. A multifunction G : J ! PclðRÞ is said to be measurable whenever the function
t # dðy;GðtÞÞ ¼ inffjy� zj : z 2 GðtÞg is measurable for all y 2 R ([19]). By utilizing some fixed point results, the main aim
of our work is to investigate the existence of solutions for the fractional differential inclusions presented in the abstract.
For this purpose we consider the Hausdorff metric Hd : 2X � 2X ! ½0;1Þ by HdðA;BÞ ¼maxfsupa2Adða;BÞ; supb2BdðA; bÞg,
where dðA; bÞ ¼ infa2Adða; bÞ. We recall that ðPb;clðXÞ;HdÞ is a metric space and ðPclðXÞ;HdÞ is a generalized metric space
([19,23]).

Let ðX; dÞ be a metric space, a : X � X ! ½0;1Þ a map and T : X ! 2X a multifunction. We say that X has the condition ðCaÞ
whenever for each sequence fxng in X with aðxn; xnþ1ÞP 1 for all n and xn ! x, there exists a subsequence fxnk

g of fxng such
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that aðxnk
; xÞP 1 for all k. We claimed that T is a-admissible whenever for each x 2 X and y 2 Tx with aðx; yÞP 1, we have

aðy; zÞP 1 for all z 2 Ty ([25]). Suppose that W is the family of nondecreasing functions w : ½0;1Þ ! ½0;1Þ such thatP1
n¼1w

nðtÞ <1 for all t > 0.

Lemma 1.1 [25]. Let ðX; dÞ be a complete metric space, a : X � X ! ½0;1Þ a map, w 2 W a strictly increasing map and
T : X ! CBðXÞ a a-admissible multifunction such that aðx; yÞHdðTx; TyÞ 6 wðdðx; yÞÞ for all x; y 2 X and there exist x0 2 X and
x1 2 Tx0 with aðx0; x1ÞP 1. If X has the condition ðCaÞ, then T has a fixed point.

Lemma 1.2 [4]. Let E be a Banach space, C a closed convex subset of E;U an open subset of C and 0 2 U. Suppose that
F : U ! Pcp;cv ðCÞ is an upper semi-continuous compact map, where Pcp;cv ðCÞ denotes the family of nonempty, compact convex sub-
sets of C. Then either F has a fixed point in U or there exist u 2 @U and k 2 ð0;1Þ such that u 2 kFðuÞ.

2. Main results

In the first step we analyze the fractional derivative inclusion

cDqxðtÞ 2 Fðt; xðtÞ; cDbxðtÞÞ ð�Þ

such that xð1Þ þ x0ð1Þ ¼
R g

0 xðsÞds and xð0Þ ¼ 0, where t 2 J; b;g 2 ð0;1Þ; q 2 ð1;2� with q� b > 1; cDq is the Caputo differenti-
ation and F : J � R� R! 2R denotes a compact valued multifunction.

Lemma 2.1. Let v 2 CðJ;RÞ. Then, the unique solution of the fractional integral boundary value problem cDqxðtÞ ¼ vðtÞ via the
boundary value problems xð1Þ þ x0ð1Þ ¼

R g
0 xðsÞds and xð0Þ ¼ 0, where b;g 2 ð0;1Þ; q 2 ð1;2� with q� b > 1, is given by

xðtÞ ¼ 1
CðqÞ

Z t

0
ðt � sÞq�1vðsÞdsþ 2t

ð4� g2ÞCðqÞ

Z g

0

Z s

0
ðs�mÞq�1vðmÞdmds� 2t

ð4� g2ÞCðqÞ

Z 1

0
ð1� sÞq�1vðsÞds

� 2t
ð4� g2ÞCðq� 1Þ

Z 1

0
ð1� sÞq�2vðsÞds

¼ PvðtÞ þ
Z 1

0
Gðt; sÞvðsÞds;

where Pv ðtÞ ¼ 2t
ð4�g2ÞCðqÞ

R g
0

R s
0 ðs�mÞq�1vðmÞdmds and

Gðt; sÞ ¼
ð4�g2Þðt�sÞðq�1Þ�2tð1�sÞq�1

ð4�g2ÞCðqÞ � 2tð1�sÞq�2

ð4�g2ÞCðq�1Þ 0 < s < t < 1;

�2tð1�sÞq�1

ð4�g2ÞCðqÞ �
2tð1�sÞq�2

ð4�g2ÞCðq�1Þ 0 < t < s < 1:

8<
:

Proof. We recall the general solution of the equation cDqxðtÞ ¼ vðtÞ as

xðtÞ ¼ IqvðtÞ � c0 � c1t ¼ 1
CðqÞ

Z t

0
ðt � sÞðq�1ÞvðsÞds� c0 � c1t;

where c0; c1 2 R denote arbitrary constants. Thus,

x0ðtÞ ¼ Iðq�1ÞvðtÞ � c1 ¼
1

Cðq� 1Þ

Z t

0
ðt � sÞq�2vðsÞds� c1:

By utilizing the boundary conditions, we conclude c0 ¼ 0 and

c1¼�
2

ð4�g2ÞCðqÞ

Z g

0

Z s

0
ðs�mÞq�1vðmÞdmdsþ 2

ð4�g2ÞCðqÞ

Z 1

0
ð1� sÞq�1vðsÞdsþ 2

ð4�g2ÞCðq�1Þ

Z 1

0
ð1� sÞq�2vðsÞds:

Hence,

xðtÞ ¼ 1
CðqÞ

Z t

0
ðt � sÞq�1vðsÞdsþ 2t

ð4� g2ÞCðqÞ

Z g

0

Z s

0
ðs�mÞq�1vðmÞdmds� 2t

ð4� g2ÞCðqÞ

Z 1

0
ð1� sÞq�1vðsÞds

� 2t
ð4� g2ÞCðq� 1Þ

Z 1

0
ð1� sÞq�2vðsÞds ¼ PvðtÞ þ

Z 1

0
Gðt; sÞvðsÞds:

This completes our proof. h
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