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In this paper, by using the spectral analysis of the relevant linear operator and Gelfand’s
formula, we obtain some properties of the first eigenvalue of a fractional differential
equation. Based on these properties, the fixed point index of the nonlinear operator is
calculated explicitly and some sufficient conditions for the existence of positive solutions
are established.
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1. Introduction

In linear elastic fracture mechanics, the stress near the crack tip exhibits a singularity of r�0:5 [1], where r is the distance
measured from the crack tip. This classical singularity also exists in many physical phenomena and biological processes, such
as gas dynamics, Newtonian fluid mechanics, nuclear physics, engineering sciences and infectious disease. So the study of
singularity of differential equations has attracted much attention in recent years, and for details the reader is referred to
[2–6,8–12] and the references cited therein.

In this paper, we study a singular fractional differential equation with signed measure

ð�Da
t xÞðtÞ ¼ f ðt; xðtÞ; Db

t xðtÞÞ; t 2 ð0;1Þ;
Db

t xð0Þ ¼ 0; Db
t xð1Þ ¼

R 1
0 Db

t xðsÞdAðsÞ;

(
ð1:1Þ

where Da
t ; Db

t are the standard Riemann–Liouville derivatives,
R 1

0 xðsÞdAðsÞ is denoted by a Riemann–Stieltjes integral and
0 < b � 1 < a � 2; a� b > 1, A is a function of bounded variation and dA can be a signed measure, the nonlinearity
f ðt; x; yÞ may be singular at both t ¼ 0; 1 and x ¼ y ¼ 0.

Here we also review some details on the nonlocal boundary condition given by a Riemann–Stieltjes integral with a signed
measure. The linear functional

R 1
0 Db

t xðsÞdAðsÞ in (1.1) is given by a Riemann–Stieltjes integral with A being a suitable function
of bounded variation. Thus A can include both sums and integrals, which implies that the nonlocal boundary condition of
Riemann–Stieltjes integral type is a more general case than the multi-point boundary condition and the integral boundary
condition (AðsÞ ¼ s or dAðsÞ ¼ hðsÞds). Moreover, dA can be a signed measure on a subset of ½0;1� (see [7]).

During the last decade, fractional equations have been discussed extensively as valuable tools in the modeling of many
phenomena in various fields of engineering and scientific disciplines such as physics, biophysics, chemistry, biology,
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economics, control theory, signal and image processing, aerodynamics, viscoelasticity, electromagnetics, and so on (see [17–
24]). Recently, many manuscripts on fractional differential equations were published (see, e.g., [2,3,5,14,25–33] and the ref-
erences therein), and many differential equations have been discussed under nonlocal boundary conditions for a wide range
of applications. For example, integral boundary conditions arise in thermal conduction problems [34]; semiconductor prob-
lems [35] and hydrodynamic problems [36]; coupled boundary conditions appear in the study of reaction–diffusion equa-
tions and Sturm–Liouville problems [37,38] and have applications in many fields of sciences and engineering [39–41] and
mathematical biology [42].

Due to the profound background of the above phenomena, this work mainly focus on handling the singularity, in partic-
ular, the singularity of f at x ¼ y ¼ 0, and the nonlocal conditions for the problem (1.1). By using the spectral analysis of the
relevant linear operator and Gelfand’s formula, we obtain some properties of the first eigenvalue corresponding to the rel-
evant linear operator. Based on these properties, the fixed point index of the nonlinear operator is calculated explicitly and
some sufficient conditions for the existence of positive solutions are established.

2. Preliminaries and lemmas

In this paper, we shall work in the Banach space E ¼ C½0;1� with the norm kyk ¼ maxt2½0;1�jyðtÞj. Let
P ¼ fy 2 E : yðtÞP 0; t 2 ½0;1�g be a cone in E and construct a subcone of P as follows

K ¼ y 2 P : yðtÞP ta�b�1ð1� tÞ
a� b

kyk; t 2 ½0;1�
� �

:

For any r > 0, let Kr ¼ fy 2 K : kyk < rg; @Kr ¼ fy 2 K : kyk ¼ rg and Kr ¼ fy 2 K : kyk 6 rg.
Now we begin our work based on the theory of fractional calculus, and for details on definitions and semigroup properties

of Riemann–Liouville fractional calculus, we refer the reader to [17–19].
Let xðtÞ ¼ IbyðtÞ; yðtÞ 2 C½0;1�, then it follows from the definition of Riemann–Liouville fractional derivative that

Da
t xðtÞ ¼ dn

dtn In�axðtÞ ¼ dn

dtn In�aIbyðtÞ ¼ dn

dtn In�aþbyðtÞ ¼ Da�b
t yðtÞ;

Db
t xðtÞ ¼ Db

t IbyðtÞ ¼ yðtÞ:
ð2:1Þ

Thus by applying (2.1), the BVP (1.1) reduces to the following modified boundary value problem

�Da�b
t y

� �
ðtÞ ¼ f ðt; IbyðtÞ; yðtÞÞ;

yð0Þ ¼ 0; yð1Þ ¼
R 1

0 yðsÞdAðsÞ:

(
ð2:2Þ

Similarly, using (2.1) again, the BVP (2.2) is also transformed to the form (1.1). Thus the BVP (2.2) is indeed equivalent to
the BVP (1.1).

Let

Gðt; sÞ ¼ 1
Cða� bÞ

½tð1� sÞ�a�b�1
; 0 6 t 6 s 6 1;

½tð1� sÞ�a�b�1 � ðt � sÞa�b�1; 0 6 s 6 t 6 1:

(
ð2:3Þ

Lemma 2.1 (see [12]). Given h 2 L1ð0;1Þ, then the problem

�Da�b
t yðtÞ ¼ hðtÞ; 0 < t < 1;

yð0Þ ¼ yð1Þ ¼ 0;

(
ð2:4Þ

has the unique solution

yðtÞ ¼
Z 1

0
Gðt; sÞhðsÞds:

By Lemma 2.1, the unique solution of the problem

�Da�b
t yðtÞ ¼ 0; 0 < t < 1;

yð0Þ ¼ 0; yð1Þ ¼ 1;

(
ð2:5Þ

is ta�b�1. Let

A ¼
Z 1

0
ta�b�1dAðtÞ; GAðsÞ ¼

Z 1

0
Gðt; sÞdAðtÞ:
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