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a b s t r a c t

In this paper, we investigate the well-posedness and the long-time asymptotic behavior for
initial-boundary value problems for multi-term time-fractional diffusion equations. The
governing equation under consideration includes a linear combination of Caputo
derivatives in time with decreasing orders in (0,1) and positive constant coefficients. By
exploiting several important properties of multinomial Mittag–Leffler functions, various
estimates follow from the explicit solutions in form of these special functions. Then we
prove the uniqueness and continuous dependency on initial values and source terms, from
which we further verify the Lipschitz continuous dependency of solutions with respect to
coefficients and orders of fractional derivatives. Finally, by a Laplace transform argument, it
turns out that the decay rate of the solution as t !1 is given by the minimum order of the
time-fractional derivatives.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let X be an open bounded domain in Rd with a smooth boundary (for example, of C1 class) and T > 0 be fixed arbitrarily.
For a fixed positive integer m, let aj and qj (j ¼ 1; . . . ;m) be positive constants such that 1 > a1 > � � � > am > 0. Consider the
following initial-boundary value problem for the multi-term time-fractional diffusion equationXm

j¼1

qj@
aj
t uðx; tÞ ¼ Luðx; tÞ þ Fðx; tÞ; x 2 X; 0 < t 6 T; ð1:1Þ

uðx; tÞ ¼ 0; x 2 @X; 0 < t 6 T; ð1:2Þ
uðx;0Þ ¼ aðxÞ; x 2 X; ð1:3Þ

8>>>><>>>>:
where L is a symmetric uniformly elliptic operator with the homogeneous Dirichlet boundary condition, and we can assume
q1 ¼ 1 without lose of generality. The regularities of the initial value a and the source term F will be specified later. Here @aj

t

denotes the Caputo derivative defined by

@
aj
t f ðtÞ :¼ 1

Cð1� ajÞ

Z t

0

f 0ðsÞ
ðt � sÞaj

ds;

http://dx.doi.org/10.1016/j.amc.2014.11.073
0096-3003/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: zyli@ms.u-tokyo.ac.jp (Z. Li), ykliu@ms.u-tokyo.ac.jp (Y. Liu), myama@ms.u-tokyo.ac.jp (M. Yamamoto).

Applied Mathematics and Computation 257 (2015) 381–397

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.11.073&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.11.073
mailto:zyli@ms.u-tokyo.ac.jp
mailto:ykliu@ms.u-tokyo.ac.jp
mailto:myama@ms.u-tokyo.ac.jp
http://dx.doi.org/10.1016/j.amc.2014.11.073
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


where Cð � Þ is a usual Gamma function. For various properties of the Caputo derivative, we refer to Diethelm [6], Kilbas et al.
[14], Podlubny [26] and Zhou [31]. See also [9,30] for further contents on fractional calculus. We abbreviate a :¼ ða1; . . . ;amÞ
and q :¼ ðq1; . . . ; qmÞ for later convenience.

In the case of m ¼ 1, Eq. (1.1) is reduced to its single-term counterpart

@a
t u ¼ Luþ F in X� ð0; T�; a 2 ð0;1Þ: ð1:4Þ

The above formulation has been studied extensively from different aspects due to its vast capability of modeling the
anomalous diffusion phenomena in highly heterogeneous aquifer and complex viscoelastic material (see [1,7,10,24] and
the references therein). Indeed, although the single-term time-fractional diffusion equation inherits certain properties from
the classical diffusion equation (i.e., a ¼ 1), it differs considerably from the traditional one especially in the senses of its
limited smoothing effect in space and slow decay in time. In Luchko [18], a maximum principle of the initial-boundary value
problem for (1.4) was established, and the uniqueness of a classical solution was proved. Luchko [19] represented the
generalized solution to (1.4) with F ¼ 0 by means of the Mittag–Leffler function and gave the unique existence result.
Sakamoto and Yamamoto [28] carried out a comprehensive investigation including the well-posedness of the initial-
boundary value problem for (1.4) as well as the long-time asymptotic behavior of the solution. It turns out that the spatial
regularity of the solution is only moderately improved from that of the initial value, and the solution decays with order t�a as
t !1. Recently, the Lipschitz stability of the solution to (1.4) with respect to a and the diffusion coefficient was proved as a
byproduct of an inverse coefficient problem in Li et al. [15]. For other discussions concerning Eq. (1.4), see e.g., Gorenflo
et al.[8], Luchko [17] and Prüss [27]. Regarding numerical treatments, we refer to Liu et al. [16] and Meerschaert and
Tadjeran [22] for the finite difference method and Jin et al. [13] for the finite element method.

As a natural extension, Eq. (1.1) is expected to improve the modeling accuracy in depicting the anomalous diffusion due to
its potential feasibility. However, to the authors’ best knowledge, published works on this extension are quite limited in spite
of rich literatures on its single-term version. Luchko [20] developed the maximum principle for problem (1.1)–(1.3) and con-
structed a generalized solution when F ¼ 0 by means of the multinomial Mittag–Leffler functions. Jiang et al. [11] considered
fractional derivatives in both time and space and derived analytical solutions. As for the asymptotic behavior, for m ¼ 2 it
reveals in Mainardi et al. [23] that the dominated decay rate of the solution is related to the minimum order of time
fractional derivative. On the other hand, Beckers and Yamamoto [4] investigated (1.1)–(1.3) in a slightly more general
formulation and obtained a weaker regularity result than that in [28]. Very recently, Jin et al. [12] developed semidiscrete
and fully discrete Galerkin finite element methods for (1.1)–(1.3).

In this paper, we are concerned with the well-posedness and the long-time asymptotic behavior of the solution to the
initial-boundary value problem (1.1)–(1.3), and we attempt to establish results parallel to that for the single-term case.
On the basis of the explicit representation of the solution, by exploiting several properties of the multinomial Mittag–Leffler
function, we give estimates for the solution, which imply the continuous dependency of solutions on initial values and
source terms. Next we will deduce the Lipschitz stability of the solution to (1.1)–(1.3) with respect to aj; qj (j ¼ 1; . . . ;m)
and diffusion coefficients. Finally, for the long-time asymptotic behavior, we employ the Laplace transform in time to show
that the decay rate as t !1 is exactly t�am , where am is the minimum order of Caputo derivatives in time.

The rest of this paper is organized as follows. The main results concerning problem (1.1)–(1.3) are collected in Section 2:
Theorems 2.1,2.2,2.3 assert the well-posedness and Theorem 2.4 is concerned with the long-time asymptotic behavior of the
solution. The proofs of the well-posedness results are given in Section 3 on the basis of several properties of the multinomial
Mittag–Leffler functions. Due to the difference of techniques, the asymptotic behavior is proved in Section 4. Next, the proofs
of technical lemmata on the multinomial Mittag–Leffler functions are postponed to Section 5. Finally, concluding remarks
are given in Section 6.

2. Main results

In this section, we state the main results obtained in this paper. More precisely, we give a priori estimates for the solution
u to (1.1)–(1.3) with respect to the initial value (Theorem 2.1), the source term (Theorem 2.2), and Lipschitz continuous
dependency of the solutions on coefficients and orders (Theorem 2.3), and we describe the asymptotic behavior of the
solution in Theorem 2.4.

To this end, we first fix some general settings and notations. Let L2ðXÞ be a usual L2-space with the inner product ð �; � Þ and
H1

0ðXÞ; H2ðXÞ denote the Sobolev spaces (see, e.g., [2]). The elliptic operator L is defined for f 2 Dð�LÞ :¼ H2ðXÞ \ H1
0ðXÞ as

Lf ðxÞ ¼
Xd

i;j¼1

@jðaijðxÞ@if ðxÞÞ þ cðxÞf ðxÞ; x 2 X;

where aij ¼ aji (1 6 i; j 6 d) and c 6 0 in X. Moreover, it is assumed that aij 2 C1ðXÞ; c 2 CðXÞ and there exists a constant
d > 0 such that

d
Xd

i¼1

n2
i 6

Xd

i;j¼1

aijðxÞninj; 8x 2 X; 8ðn1; . . . ; ndÞ 2 Rd:
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