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a b s t r a c t

In this paper, two kinds of explicit second order difference schemes are developed to solve
the space fractional advection diffusion equation. The discretizations of fractional
derivatives are based on the weighted and shifted Grünwald difference operators devel-
oped in [Meerschaert and Tadjeran, J.Comput.Appl.Math. 172 (2004) 65–77; Tian et al.,
arXiv:1201.5949; Li and Deng, arXiv:1310.7671]. The stability of the presented difference
schemes are discussed by means of von Neumann analysis. The analysis shows that the
presented numerical schemes are both conditionally stable. The necessary conditions of
stability is discussed. Finally, the results of numerical experiments are given to illustrate
the performance of the presented numerical methods.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we discuss the explicit difference schemes for the following fractional advection diffusion equation

utðx; tÞ þ vuxðx; tÞ ¼ dx j1aDa
x þ j2xDa

b

� �
uðx; tÞ þ f ðx; tÞ; ð1Þ

where uðx; tÞ is the concentration of a solute at a point x at time t; f ðx; tÞ is the source term, vð> 0Þ is the advection
coefficient, dxð> 0Þ is the diffusion coefficient. The parameters j1 P 0 and j2 P 0 are skewed parameters that control the
bias of the dispersion [1]. And ut ¼ @u

@t ; ux ¼ @u
@x ; aDa

x and xDa
b are the left and right Riemann–Liouville fractional derivatives

of order að1 < a < 2Þ, respectively, defined by [18,20,33]

aDa
x uðx; tÞ ¼ 1

Cð2� aÞ
@2

@x2

Z x

a
ðx� nÞ1�auðn; tÞdn ð2Þ

and

xDa
buðx; tÞ ¼ ð�1Þ2

Cð2� aÞ
@2

@x2

Z b

x
ðn� xÞ1�auðn; tÞdn: ð3Þ

Eq. (1) arise naturally in many applications, such heat conduction with anomalous diffusion, nonlocal reactive flow in porous
media and non-Fickian flow of fluids in porous media, see [1,16,3,8]. Over the last decade, there has been an interest in
numerical methods or algorithms for solving the space fractional advection diffusion equation (1). The finite difference
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approximation is relatively easy to implement, there some progress in the numerical solution of fractional advection diffu-
sion equations in the past decade, see [9,14,12,15,27,5,11,6].

In recent years, high order accurate difference schemes and fast algorithms for space fractional partial differential equa-
tions with Riemann–Liouville fractional derivatives attract many authors’ interesting. Base on the Toeplitz-like structure of
the difference matrix presented in [14], Wang et al. [31] presented a Nlog2N finite difference algorithm for fractional diffu-
sion equations. Later, Pang and Sun [19] proposed a multigrid method to solve the discretized linear system of the fractional
diffusion equation. Two main techniques are popular to get the higher order accurate approximations for the fractional
derivatives. The first one is using higher order numerical quadrature formula to approximate the Riemann–Liouville frac-
tional derivatives. In the literature, by introducing the piecewise linear interpolation, Sousa and Li presented a second order
discretization for the Riemann–Liouville fractional derivatives and established an unconditionally stable weighted average
finite difference method for one-dimensional fractional diffusion equation in [24]. Based on linear interpolation, Deng and
Chen [6] provided a second order finite difference scheme to solve three-dimensional fractional advection diffusion equation.
Another way of designing higher order approximation is to recombine the Grünwald–Letnikov difference operators or mod-
ify the generation function of weights in Grünwald–Letnikov derivatives [7,18]. Ortigueira in his work [17] gave the ‘‘frac-
tional centered derivative’’ to approximate the Riesz fractional derivative with second order accuracy, and this method was
used by Çelik and Duman to approximate fractional diffusion equation with the Riesz fractional derivative in a finite domain
[2]. For more application and extension of ‘‘fractional centered derivative’’ one can see the recent works [26,22] and refer-
ences, therein. By combining the shifted Grünwald–Letnikov derivatives given by Meerschaert and Tadjeran [14], Tian et al.
[29] proposed some second order difference approximations, called by weighted and shifted Grünwald–Letnikov differ-
ence(WSGD) approximations, to the Riemann–Liouville fractional derivatives. A family of second accurate difference
schemes are established for the fractional diffusion equations by those approximations. The key issue of the WSGD approx-
imation is combining the distinct shifted Grünwald–Letnikov formulae with their corresponding weights. Motivated by this
idea, in our recent work [13], we introduced some possible extensions of the second order WSGD approximations presented
in the previous work [29]. Based on weighting the shifted Grünwald–Letnikov derivatives by multi-parameters, we derive a
new family of second order difference operators for Riemann–Liouville fractional derivatives. Furthermore, using the new
second order difference discretizations, we designed two kinds of implicit difference schemes for the space fractional advec-
tion diffusion equation. Comparing to the implicit difference scheme, the discretized linear system of explicit difference
scheme is not concerned with the inverse matrix. It is popular for the equations which advection term appears. However,
it is stable under some conditions. So it is important to analysis the stability of explicit difference scheme [10,28,21]. So
far, limit works are reported to discuss the stability of explicit difference schemes for space fractional advection diffusion
equation besides Sousa’s works [23,25]. With the help of von Neumann analysis method, we analyze the stability of the pro-
posed numerical methods. The analysis show that explicit central-WSGD scheme and Lax–Wendroff-WSGD schemes are sta-
ble under some certain restriction on the time and spatial steps.

The remaining part of this article is organized as follows. In Section 2, we briefly introduce the second order WSGD
operators for the Riemann–Liouville fractional derivatives. We then present two kinds of difference schemes for the
space-fractional advection diffusion equation with second order accuracy. The stability and convergence of the method
are proved in Section 3. Finally, in Section 4, we present two numerical examples to demonstrate the performance of the
proposed numerical schemes. Numerical results support our analysis and show the performance of the proposed numerical
schemes.

2. Second order approximation schemes

We shall design difference formulations for the advection diffusion equation (1) with the initial condition

uðx;0Þ ¼ gðxÞ; x 2 ða; bÞ

and the Dirichlet boundary conditions

uða; tÞ ¼ /aðtÞ; uðb; tÞ ¼ /bðtÞ; t 2 ð0; T�:

And if j1 – 0, then /aðtÞ � 0 and j2 – 0, then /bðtÞ � 0. In order to construct difference schemes for the advection diffusion
equation (1) with above initial-boundary conditions, we first introduce the discretizations of the Riemann–Liouville
fractional derivatives. In fact, many different definitions of fractional derivatives, such as the Grünwald–Letnikov derivative,
Riemann–Liouville derivative, the Caputo derivative, and other modified definitions are introduced for the practical
application [18]. Among these definitions, the Grünwald–Letnikov derivatives is more suitable for numerical approximation.
It is usual used to approach the Riemann–Liouville derivative. For a function uðxÞ 2 C½a; b� , the relation between left
Grünwald–Letnikov derivatives of uðxÞ with uðaÞ ¼ 0 and left Riemann–Liouville derivatives of function uðxÞ gives [18]

aDa
x uðxÞ ¼ 1

ha

Xx�a
h½ �

k¼0

wðaÞk uðx� khÞ þ OðhÞ:

And the relation between right Grünwald–Letnikov of uðxÞwith uðbÞ ¼ 0 and right Riemann–Liouville derivatives of function
uðxÞ gives [18]
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