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a b s t r a c t

The paper is concerned with a mixed stochastic delay differential equation involving both a
Wiener process and a c-Hölder continuous process with c > 1=2 (e.g. a fractional Brownian
motion with Hurst parameter greater than 1/2). It is shown that its solution depends con-
tinuously on the coefficients and the initial data. Two applications of this result are given:
the convergence of solutions to equations with vanishing delay to the solution of equation
without delay and the convergence of Euler approximations for mixed stochastic differen-
tial equations. As a side result of independent interest, the integrability of solution to
mixed stochastic delay differential equations is established.

� 2015 Published by Elsevier Inc.

1. Introduction

In this paper we consider a multidimensional mixed stochastic delay differential equation

dXðtÞ ¼ aðt;XtÞdt þ bðt;XtÞdWðtÞ þ cðt;XtÞdZðtÞ; t 2 ½0; T�: ð1Þ

In this equation the coefficients a; b; c depend on the past Xs ¼ Xðsþ uÞ;u 2 ½�r;0�f g of the process X, and the initial con-
dition is thus given by XðtÞ ¼ gðtÞ; t 2 ½�r;0�, where g : ½�r;0� ! R is some function. Eq. (1) is driven by two random pro-
cesses: a standard Wiener process W and a process Z, whose trajectories are c-Hölder continuous with c > 1=2. The
process Z is usually a long memory process, e.g. a fractional Brownian motion BH with the Hurst parameter H > 1=2.

Itô stochastic delay differential equations, i.e. those with c ¼ 0, were investigated in many articles, see [9,13] and
references therein. Fractional stochastic delay differential equations, in which b ¼ 0 and Z ¼ BH , were considered in only
few papers. For H > 1=2, the existence and uniqueness of solution under different sets of assumptions was established in
[1–5,8]. In the case H > 1=3, the existence and uniqueness of solution was shown in [14] for coefficients of the form
f ðXðtÞ;Xðt � r1Þ;Xðt � r2Þ; . . .Þ.

The existence and uniqueness of solution to Eq. (1) was established in [15], where also the finiteness of moments was
shown under the additional assumption that the coefficient b is bounded. Mixed equations without delay were considered
in articles [6,7,11,12,16,17].

In this article we prove that if the coefficients and initial conditions of mixed stochastic delay differential equations con-
verge, then their solutions converge uniformly in probability. We give two applications of this result. First we show that
when the delay vanishes, solutions of mixed stochastic delay differential equations converge uniformly in probability to a
solution of equation without delay. Then we establish the uniform convergence of Euler approximations for mixed stochastic
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differential equation towards its solution. We also extend the results of [16] about the integrability of solution to (1), drop-
ping the assumption that b is bounded.

The paper is organized as follows. Section 2 provides necessary information about pathwise stochastic integration and
describes the notation used in the article. Section 3 contains the main result of the article about convergence of solutions
to mixed stochastic delay differential equations with convergent coefficients and initial conditions. It also contains a result
of independent interest about the integrability of solution to mixed stochastic delay differential equation. Section 4 is
devoted to applications of the convergence results. In SubSection 4.1, a sequence of mixed stochastic delay differential equa-
tions is considered with delay horizon converging to zero, and it is shown that their solutions converge to a solution of equa-
tion without delay. In SubSection 4.2 it is proved that the Euler approximations for mixed stochastic differential equation
(without delay) converge to its solution, as the mesh of partition goes to zero. Appendix contains an auxiliary result about
convergence of solutions to Itô stochastic delay differential equations with random coefficients, which is used in the proof of
main theorem.

2. Preliminaries

Let ðX;F ; F ¼ fF t; t P 0g; PÞ be a standard stochastic basis.
Throughout the article, j � jwill denote the absolute value of a real number, the Euclidean norm of a vector, or the operator

norm of a matrix. The symbol C will denote a generic constant, whose value may change from one line to another. To empha-
size its dependence on some parameters, we will put them into subscripts.

We will need the notion of generalized fractional Lebesgue–Stieltjes integral. Below we give only basic information on the
integral, further details and proofs can be found in [18].

Let f ; g : ½a; b� ! R; a 2 ð0;1Þ. Define the forward and backward fractional Riemann–Liouville derivatives
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where x 2 ða; bÞ.
The generalized Lebesgue–Stieltjes integral is defined as
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provided the integral in the right-hand side exists. For functions f ; g : ½a; b� ! R and a number a 2 ð0;1Þ define
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Note that only the first expression defines a norm, the second defines a seminorm. The following fact is evident: if
fk k1;a;½a;b� <1 and gk k0;a;½a;b� <1, then the generalized Lebesgue–Stieltjes integral is well defined and admits an estimate

Z b

a
f ðxÞdgðxÞ

�����
����� 6 1

CðaÞCð1� aÞ fk k1;a;½a;b� gk k0;a;½a;b�: ð4Þ

We will also need an estimate in terms of Hölder norms. Namely, if f 2 Ck½a; b�; g 2 Cl½a; b� with k 2 ð0;1Þ; l 2 ð0;1Þ and
kþ l > 1, then the generalized Lebesgue–Stieltjes integral is well defined and coincides with the Riemann–Stieltjes integral.
Moreover, the Young–Love inequality holds:

Z b

a
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����� 6 Ck;l gk ka;b;l fk ka;b;1 þ fk ka;b;kðb� aÞk

� �
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where fk ka;b;1 ¼ supx2½a;b� f ðxÞj j is the supremum norm on ½a; b�, and

fk ka;b;k ¼ sup
a6x<y6b

f ðyÞ � f ðxÞj j
ðy� xÞk

is the Hölder seminorm.
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