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In this paper, we derive a new nonlinear two-sided space-fractional diffusion equation
with variable coefficients from the fractional Fick’s law. A semi-implicit difference method
(SIDM) for this equation is proposed. The stability and convergence of the SIDM are dis-
cussed. For the implementation, we develop a fast accurate iterative method for the SIDM
by decomposing the dense coefficient matrix into a combination of Toeplitz-like matrices.
This fast iterative method significantly reduces the storage requirement of Oðn2Þ and com-
putational cost of Oðn3Þ down to n and Oðn log nÞ, where n is the number of grid points. The
method retains the same accuracy as the underlying SIDM solved with Gaussian elimina-
tion. Finally, some numerical results are shown to verify the accuracy and efficiency of the
new method.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the past few decades, anomalous diffusion modeled using governing equations involving space- and/or time-fractional
operators has generated great interest. From the point of view of probability, fractional calculus describe an anomalous dif-
fusion phenomenon, in which a cloud of particles spreads in a different manner than traditional diffusion (see [1] for details).
The fractional diffusion model provides a more adequate and accurate description of memory and hereditary properties of
anomalous transport process in heterogenous porous media, and has been successfully applied to simulate processes in bio-
logical systems [2–6], hydrology [7–9], image processing [10], and physics [11].

In practical problems, the diffusion coefficient is usually space or time dependent. However, few papers have focused on
the variable-coefficient space fractional diffusion equation in conservative form. Therefore, it is the aim of this paper to
derive a more generalized fractional diffusion model with variable coefficients in conservative form. According to the prin-
ciple of conservation of mass, the equation of continuity in one-dimensional form is given by
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where Qðx; tÞ denotes the diffusion flux, f ðu; x; tÞ is the nonlinear source term, and uðx; tÞ is the distribution function of the
diffusing quantity. We modified the classical Fick’s law by

Qðx; tÞ ¼ �CðxÞ @
@x

Z x

a
kþðx; nÞuðn; tÞdn� DðxÞ @

@x

Z b

x
k�ðx; nÞuðn; tÞdn; ð2Þ

where CðxÞ and DðxÞ are the nonnegative diffusion coefficients, CðxÞ decreases monotonically with respect to x and DðxÞ
increases monotonically with respect to x in the domain ½a; b�; kþðx; nÞ; k�ðx; nÞ are the kernel functions defined by

kþðx; nÞ ¼ 1
Cð1�aÞ ðx� nÞ�a

; for a 6 n 6 x;

k�ðx; nÞ ¼ 1
Cð1�aÞ ðn� xÞ�a

; for x 6 n 6 b;

(
ð3Þ

with 0 < a < 1. The combination of Eqs. (1) and (2) results in the following conservative form of a nonlinear two-sided
space-fractional diffusion model with variable diffusivity coefficients:
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where the operators @a

@xa ;
@a

@ð�xÞa are the left and right Riemann–Liouville fractional derivatives (see [1,12,13]) defined by
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respectively, for n� 1 6 a < n, where n is an integer. In this paper, we focus on the construction of an unconditionally stable
and effective semi-implicit difference scheme for (4) subjected to the boundary and initial conditions

uða; tÞ ¼ uðb; tÞ ¼ 0; 0 6 t 6 T; ð7Þ
uðx;0Þ ¼ /ðxÞ; a 6 x 6 b: ð8Þ

Anh and Leonenko [14] presented a spectral representation of the mean-square solution of the fractional kinetic equation
with random initial condition. Generally, numerical solution techniques are preferred when dealing with fractional models
since the analytical solutions are only available for a few simple cases. During the last decade, extensive research has been
carried out on the development of efficient numerical solutions for fractional partial differential equations, including finite
difference methods [15–20], the finite volume method [21], the finite element method [22–24], and the spectral method
[25,26]. In contrast to numerical methods for the integer-order partial differential equation, which usually generates a
banded coefficient matrix, the finite difference discretization of the space-fractional model results in a linear system with
a full, or dense, coefficient matrix. Normally speaking, owing to the non-local nature of fractional operators, the traditional
approach (Gaussian elimination method, for instance) to solve the resulting linear system requires an Oðn2Þ storage and an
Oðn3Þ computational cost for a problem of size n. Therefore, from the computational point of view, efficient and effective
numerical methods that can significantly reduce the amount of CPU time are of high importance. Wang et al. [27] developed
an Oðnlog2nÞ fast finite difference method for a fractional diffusion equation by carefully analyzing the special structure of
the coefficient matrix, and then extended this technique to derive a fast alternating-direction finite difference method for the
two-dimensional fractional diffusion model [28]. Wang et al. [29] constructed a fast conjugate gradient squared method
(FCGS) by decomposing the coefficient matrix into a combination of sparse and Toeplitz-like matrices. Moroney [30] pre-
sented a fast Poisson preconditioner for a Jacobian-free Newton–Krylov method to solve the nonlinear space-fractional dif-
fusion equations.

In this paper, we develop a semi-implicit difference method (SIDM) for the new nonlinear two-sided space-fractional dif-
fusion equation with variable coefficients and prove the unconditional stability and convergence of the SIDM. Based on the
observation that the coefficient matrix of the SIDM can be decomposed into a combination of sparse and Toeplitz-like dense
matrices, we develop a fast bi-conjugate gradient stabilized method (FBi-CGSTAB) for the proposed difference strategy by
exploiting the Toeplitz-like structure of the coefficient matrix.

The remainder of this paper is organized as follows. In Section 2, we construct a semi-implicit difference method (SIDM)
for a space-fractional diffusion model (4). In Section 3, we discuss the consistency and solvability, stability, and convergence
of the SIDM. In Section 4, we present a fast bi-conjugate gradient stabilized method that significantly reduces the computa-
tional complexity from Oðn3Þ to Oðn log nÞ and the memory requirement from Oðn2Þ to OðnÞ for the model of size of n. Finally,
we carry out numerical experiments to verify the performance of our method by comparing consumed CPU time with the
regular method in Section 5.
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