FISEVIER

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

A functional generalization of the interpolation problem

Çetin Dişibüyük

Department of Mathematics, Dokuz Eylül University, Fen Fakültesi, Tınaztepe Kampüsü, 35160 Buca, İzmir, Turkey

ARTICLE INFO

Keywords: Interpolation Generalized Lagrange interpolation Generalized Hermite interpolation

ABSTRACT

Given two linearly independent functions f_1 and f_2 , we generalize the interpolating problem to the space $\pi_n(f_1,f_2)$ spanned by the basis $\left\{f_1^{n-k}f_2^k\right\}_{k=0}^n$. We show that this problem has a unique solution and represent this solution by a functional analogue of the Lagrange formula. We also give a similar generalization of Hermite interpolation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let f_1 and f_2 be two linearly independent functions on [a,b]. Then the functions $\phi_k^n = f_1^{n-k} f_2^k$, k = 0, 1, ..., n are linearly independent on [a,b] (see [1]). We consider interpolation problem in the space

$$\pi_n(f_1, f_2) = \text{span}\{\phi_0^n, \phi_1^n, \dots, \phi_n^n\}.$$

Using the barycentric coordinates of a point on the planar parametric curve $P(t) = (f_1(t), f_2(t)), \ a \le t \le b$ satisfying $d(x_1, x_2) = f_1(x_1)f_2(x_2) - f_1(x_2)f_2(x_1)$ that never vanishes for distinct $x_1, x_2 \in [a, b]$, we establish the solution. The barycentric coordinates of a point $P(x) = (f_1(x), f_2(x)), \ a \le x \le b$ on this curve relative to the endpoints of the arc of P(t) from $P(a) = (f_1(a), f_2(a))$ to $P(b) = (f_1(b), f_2(b))$ are the solutions $\alpha(x, a, b), \beta(x, a, b)$ of the system

$$\alpha f_1(a) + \beta f_1(b) = f_1(x),$$

 $\alpha f_2(a) + \beta f_2(b) = f_2(x).$

Solving this system of equations gives $\alpha(x,a,b) = \frac{d(x,b)}{d(a,b)}$ and $\beta(x,a,b) = \frac{d(a,x)}{d(a,b)}$. It is shown in [1] that every element from the space $\pi_n(f_1,f_2)$ can be represented in terms of the barycentric coordinates.

Note that if $f_1(x) = 1$ and $f_2(x) = x$, then $d(x_1, x_2) = x_2 - x_1$ never vanishes for distinct $x_1, x_2 \in \mathbb{R}$ and the space $\pi_n(1, x)$ is space of the polynomials of degree n. If $f_1(x) = \cos x$ and $f_2(x) = \sin x$, then $d(x_1, x_2) = \sin(x_2 - x_1)$ never vanishes for distinct $x_1, x_2 \in [a, b]$, where $b - a < \pi$. It is given in [2] that

$$\pi_n(\cos x, \sin x) = \begin{cases} \operatorname{span}\{\sin x, \cos x, \sin 3x, \dots, \sin nx, \cos nx\}, & n \text{ is odd,} \\ \operatorname{span}\{1, \sin 2x, \cos 2x, \dots, \sin nx, \cos nx\}, & n \text{ is even.} \end{cases}$$
(1)

Since $d(x_1, x_2)$ never vanishes, the barycentric coordinates

$$l_1(x) = \frac{d(x, x_2)}{d(x_1, x_2)}$$
 and $l_2(x) = \frac{d(x_1, x)}{d(x_1, x_2)}$

form a uni-solvent system. A system of k functions l_1, l_2, \ldots, l_k defined on a point set S is called uni-solvent on S if

E-mail address: cetin.disibuyuk@deu.edu.tr

$$|l_i(x_j)| \neq 0$$

holds for every selection of k distinct points lying in S. (See [3].)

We proceed in the following fashion. In Section 2 we investigate the interpolation problem in the space $\pi_n(f_1,f_2)$ and find an error term. Section 3 gives the representation of the interpolating function in both the Lagrange form and the Hermite form.

2. Existence and uniqueness

A classical approach to solve the polynomial interpolation problem is to solve a system of linear equations that involve the Vandermonde matrix. We now generalize this.

Theorem 2.1. Given n+1 distinct points x_0, x_1, \ldots, x_n and corresponding values y_0, y_1, \ldots, y_n . Then there exists a unique function $g(x) \in \pi_n(f_1, f_2)$ for which

$$g(x_i) = y_i, \quad i = 0, 1, ..., n.$$

Proof. Let $g(x) = a_0 \phi_0^n(x) + a_1 \phi_1^n(x) + \dots + a_n \phi_n^n(x)$ be the interpolating function. Imposing the interpolating conditions lead to a system of n+1 linear equations in n+1 unknowns:

$$a_0\phi_0^n(x_i) + a_1\phi_1^n(x_i) + \cdots + a_n\phi_n^n(x_i) = v_i$$

 $i = 0, 1, \dots, n$. It remains to show that this system of equations has unique solution, that is the determinant

$$V_{f_{1}f_{2}}(x_{0},...,x_{n}) = \begin{vmatrix} \phi_{0}^{n}(x_{0}) & \cdots & \phi_{n-1}^{n}(x_{0}) & \phi_{n}^{n}(x_{0}) \\ \phi_{0}^{n}(x_{1}) & \cdots & \phi_{n-1}^{n}(x_{1}) & \phi_{n}^{n}(x_{1}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_{0}^{n}(x_{n}) & \cdots & \phi_{n-1}^{n}(x_{n}) & \phi_{n}^{n}(x_{n}) \end{vmatrix}$$
(2)

is nonzero. This determinant may be viewed as a functional analogue of the Vandermonde determinant. Evaluating V_{f_1,f_2} is similar to the classical case (see [3]). Consider the function

$$V(x) = V_{f_1, f_2}(x_0, \dots, x_{n-1}, x) = \begin{vmatrix} \phi_0^n(x_0) & \cdots & \phi_{n-1}^n(x_0) & \phi_n^n(x_0) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_0^n(x_{n-1}) & \cdots & \phi_{n-1}^n(x_{n-1}) & \phi_n^n(x_{n-1}) \\ \phi_0^n(x) & \cdots & \phi_{n-1}^n(x) & \phi_n^n(x) \end{vmatrix}.$$

It follows from the expansion of the above determinant by its last row that $V_{f_1f_2}(x_0, \dots, x_{n-1}, x) \in \pi_n(f_1, f_2)$. Substituting $x = x_i$, $i = 0, 1, \dots, n-1$ gives two identical rows in the determinant, that is; V(x) has n zeros at x_i , $i = 0, 1, \dots, n-1$. Hence we may write

$$V_{f_1,f_2}(x_0,x_1,\ldots,x) = Cd(x_0,x)d(x_1,x)\cdots d(x_{n-1},x),$$
(3)

where C depends only on $x_0, x_1, \ldots, x_{n-1}$. Comparing the coefficients of $(f_2(x))^n$ on both sides of the Eq. (3) yields

$$\begin{vmatrix} f_1(x_0)\phi_0^{n-1}(x_0) & \cdots & f_1(x_0)\phi_{n-1}^{n-1}(x_0) \\ \vdots & \vdots & \vdots \\ f_1(x_{n-1})\phi_0^{n-1}(x_{n-1}) & \cdots & f_1(x_{n-1})\phi_{n-1}^{n-1}(x_{n-1}) \end{vmatrix} = Cf_1(x_0)\cdots f_1(x_{n-1}).$$

Every element in the *j*th row of the above determinant has a factor $f_1(x_{i-1}), j = 1, 2, ..., n$. Thus we obtain

$$f_1(x_0)\cdots f_1(x_{n-1})V_{f_1,f_2}(x_0,\ldots,x_{n-1})=Cf_1(x_0)\cdots f_1(x_{n-1}).$$

Cancelling the terms gives the following recurrence

$$V_{f_1,f_2}(x_0,\ldots,x_n) = V_{f_1,f_2}(x_0,\ldots,x_{n-1})d(x_0,x_n)\cdots d(x_{n-1},x_n). \tag{4}$$

Since $V_{f_1,f_2}(x_0,x_1)=d(x_0,x_1)$ and the points x_i , for $i=0,1,\ldots n$ are distinct, by repeated application we obtain

$$V_{f_1,f_2}(x_0,...x_n) = \prod_{i< i}^n d(x_i,x_i) \neq 0.$$
 \Box (5)

The following theorem gives the error between f(x) and its interpolating function g(x).

Download English Version:

https://daneshyari.com/en/article/6420564

Download Persian Version:

https://daneshyari.com/article/6420564

<u>Daneshyari.com</u>