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a b s t r a c t

In this paper we study the numerical resolution of a reinforced random walk model arising
in haptotaxis and the stabilization of solutions. The model consists of a system of two
differential equations, one parabolic equation with a second order non-linear term
(haptotaxis term) coupled to an ODE in a bounded two dimensional domain. We assume
radial symmetry of the solutions. The scheme of resolution is based on the application of
the characteristics method together with a finite element one. We present some numerical
simulations which illustrate some features of the numerical stabilization of solutions.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

A characteristic feature of living organisms is that they respond to the environment in search of food and a reproductive
mate, which is called taxis. Corresponding to the type of the external stimulus, various types of taxis are defined, such as
haptotaxis, chemotaxis and others.

Chemotaxis is a process whereby living organisms respond to chemical substance by moving toward higher or lower con-
centrations of the chemical substance, or by aggregating or dispersing. Haptotaxis is closely related to chemotaxis, as it is the
directional motility or growth of cells following gradient of cellular adhesion sites or substrate-bound chemoattractants. The
gradient of the chemical signal in this case is expressed or bound on a surface, in contrast to the classical model of chemo-
taxis, in which gradient develops in a soluble fluid. These gradients are naturally present in the extracellular matrix of the
body during process such as angiogenesis.

In the majority of the theoretical analysis the signal is transported by diffusion, convection or by some other means. The
classical chemotaxis equation was introduced by [11], after [15], as the first model to describe the aggregation of slime mold
amoebae due to an attractive chemical substance. The model involves the density distribution of the bacteria u and the
chemical concentration v in a coupled system of partial differential equations

ut ¼ Du� divðuvðvÞrvÞ;

v t � Dv ¼ gðu; vÞ;

where ut ¼ @u
@t and v t ¼ @v

@t .
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However, in some chemotaxis phenomena, the diffusion of the chemical attractant is ignorable, the walker seems to mod-
ify the environment in a strictly local manner and there is little or no transport of the chemical substance.

In an attempt to gain understanding of the mechanisms that causes the aggregation of myxobacteria, which slide over
slime trails thereby reinforcing the trails, [14] proposed a model based on reinforced random walks. The system of equations
derived by Othmer and Stevens is the following:

ut ¼ divðDru� uvðvÞrvÞ; ð1Þ

v t ¼ gðu;vÞ; ð2Þ

where D is the diffusion constant and vðvÞ is the chemotactic sensitivity of the bacteria. Both, vðvÞ and gðu;vÞ depend on the
nature of the interaction between the bacteria and the chemical stimulus.

[9] studied a reinforced random walk model in haptotaxis. They considered system 1,2 in a bounded domain X � Rn with
boundary condition:

D
@u
@n
� uvðvÞ @v

@n

� �
¼ 0; x 2 @X; t > 0; ð3Þ

where @u
@n and @v

@n are outward normal derivatives, the random motility D is assumed to be constant and v measures the hapto-
tactic sensitivity. The function gðu;vÞ is assumed to be of the form

gðu;vÞ ¼ ehðu;vÞ/ðu;vÞ;
where, for some constants 0 6 u1 6 u2;v1 < v2, it is satisfied

/ðu; vÞ > 0; if u1 6 u 6 u2; v1 6 v 6 v2;

and ehðu1; v1Þ ¼ ehðu2; v2Þ:

This problem describes the evolution of a biological species moving along a gradient of the concentration of a second species.
Notice that in the case of chemotaxis systems, the second species diffuses in a higher or lower velocity, depending on the
process, and it is modelized by a parabolic or elliptic equation.

This kind of equations, containing haptotaxis terms, arise for example in modeling cancer process, as angiogenesis, see for
instance [1,12]. These problems also present mathematical challenges whereby several authors have been interested, as the
literature shows, see for example [9,13,16], and references therein.

From the mathematical point of view, in [9], it is proved that any stationary state ðu�;v�Þ of 1,2 is asymptotically stable
provided:

g ¼ eh/; / > 0; ehp > 0; pvehp þ ehw < 0 at ðu�; v�Þ: ð4Þ

If (4) is satisfied, then any solution of 1,2, in a bounded domain with boundary condition (3), and initial values near ðu�;v�Þ,
exists for all t > 0 and converges as t !1 to a nearby stationary solution ðu;vÞ. This assertion means that under assumption
(4), solutions tend to an uniform distribution, provided the initial distribution is nearly uniform.

The question about what the behavior of solutions could be when condition (4) is not satisfied was the motivation for the
study presented in this paper.

This paper is involved with the numerical resolution of a particular case of system 1,2, considered in [9] as an example. To
precise, we shall consider the following parabolic-ODE system posed in a bounded domain X � R2,

ut ¼ div ru� u
b

aþ bvrv
� �� �

; x 2 X; t > 0; ð5Þ

v t ¼ u� lhðvÞ; x 2 X; t > 0; ð6Þ

that is, vðvÞ ¼ b
aþbv, with l > 0;a > 0 and b > 0, complemented with the boundary condition

@u
@n
� u

b
aþ bv

@v
@n

� �
¼ 0; x 2 @X; t > 0; ð7Þ

and initial data

uðx;0Þ ¼ u0ðxÞ; vðx; 0Þ ¼ v0ðxÞ; x 2 X: ð8Þ

For this particular case, if assumption

vðvÞhðvÞ < h0ðvÞ for u1 6 u 6 u2; v1 6 v 6 v2; ð9Þ

with v2 � v1 small enough, is verified, then assumption (4) is also satisfied (see [9]).
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