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a b s t r a c t

An inverse source problem for the heat equation is studied in a bounded domain. A dynam-
ical nonlinear boundary condition (containing the time derivative of a solution) is pre-
scribed on one part of the boundary. This models a non-perfect contact on the boundary.
The missing purely time-dependent source is recovered from an additional integral mea-
surement. The global in time existence and uniqueness of a solution in corresponding func-
tion spaces is addressed using the backward Euler method for the time discretization. Error
estimates for time-discrete approximations are derived.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Physical problems described by partial differential equations (PDEs) accompanied with non-standard boundary condi-
tions (BCs) have been studied by a number of authors in recent years. The dynamical (evolutionary) BCs are not very com-
mon in the mathematical literature. Nevertheless, they appear in many mathematical models including heat transfer [1] in a
solid in contact with a moving fluid, thermo-elasticity, diffusion phenomena, problems in fluid dynamics, etc. (see [2–5] and
the references therein). This BC is sometimes called Wentzel boundary condition after A.D. Wentzel (see [6,7]). The dynam-
ical boundary condition contains the time derivative of u and this models an imperfect contact with the surrounding area.
The inflow depends on the change in time of u at the boundary. A very nice application of such a BC is presented in [8]. It
models precipitation of rain into a porous media. If the rainfall rate is fully absorbed by soil then the classical Neumann BC
can be applied. But if a region near the boundary becomes saturated, then there is no inflow into the porous media. Thus the
inflow rate depends on the ability of soil to absorb. Such a situation can be modelled by a dynamical BC.

Let X � Rd; d P 1 be a bounded domain with sufficiently smooth boundary C, which is split into two non-overlapping
complementary parts CD and CN . We denote the outer normal vector associated with C by m. We consider the following par-
abolic problem for u accompanied with mixed (Dirichlet and nonlinear evolutionary) BCs

@tuðx; tÞ � Duðx; tÞ ¼ hðtÞf ðxÞ in X� ð0; TÞ;
�ruðx; tÞ � m ¼ @tuðx; tÞ þ rðuðx; tÞÞ on CN � ð0; TÞ;
uðx; tÞ ¼ 0 on CD � ð0; TÞ;
uðx;0Þ ¼ u0ðxÞ for x 2 X
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with the final time T > 0. If all data functions h; f ; u0 and r are given and they obey appropriate conditions, then the Direct
problem (1) admits a unique solution u. This can be verified by usual techniques for parabolic equations.

The nonlinear function r can model radiative BC, i.e. rðsÞ ¼ s3jsj. Please note that the last example has to be linearized for
large values of arguments, which is natural in practical applications (we will adopt Lipschitz continuity of r). If we do not
modify the rðsÞ for large arguments, then we have to involve the monotone behavior of r and apply the theory of monotone
operators [9,10].

This paper is devoted to the identification of a solely time-dependent source hðtÞ from a given space average of u, namely

mðtÞ ¼
Z

X
uðx; tÞdx; t 2 ½0; T�: ð2Þ

A physical motivation of (2) can be found e.g. in [11, p. 378]. The integral overdetermination (2) within the framework of
inverse problems for parabolic, hyperbolic and Navier–Stokes equations has been studied e.g. in [11–14] and the references
therein. Inverse problems (IPs) are typically ill posed in the sense of Hadamard – see [15]. This means that there is either no
solution in a classical sense, or if there is any, then it might not be unique or might not depend continuously on the data.
There are two big goals in IPs: (global or local) existence of a solution and its uniqueness. The usual methodology in IPs relies
on suitable parametrization of the problem and involving continuous dependence of a parametrized solution on the param-
eter itself. Then an cost functional capturing the error between parametrized and exact solutions at a given place is con-
structed and minimized. Lack of convexity of this functional disturbs the uniqueness of a solution. Therefore a suitable
(Tikhonov) regularization of the functional is applied to guarantee its convexity, cf. [16–18]. Minimization is based on the
theory of monotone operators and numerically solved by adequate approximation techniques, such as the steepest descend,
Ritz or Newton or Levenberg–Marquardt method.

The Inverse Source Problem (ISP) studied in this paper consists of finding a couple ðuðx; tÞ;hðtÞÞ obeying (1) and (2). Let us
note that this represents just a simplified study case. One can add material coefficients depending on both (time and place)
variables to the PDE and BCs. Such an augmented problem will be solvable (adopting reasonable conditions on data func-
tions) by the same technique described below. For ease of explanation we decided to keep the setting so simple as possible
but preserving the substantial parts within the study scenario.

Determination of an unknown source is one of hot topics in IPs. If the source exclusively depends on the space variable,
one needs an additional space measurement (e.g. solution at the final time), cf. [11,19–27]. For solely time-dependent source
a supplementary time-dependent measurement is needed, cf. [11,28–30]. This means that both kinds of ISPs need totally
different additional data.

Semigroup approach for determination of the unknown hðtÞ in a linear heat equation has been used in [28,31] subject to
standard BCs. Abstract IPs with Dirichlet BCs and their applications in mathematical physics have been addressed in [11,
chapter 6]. Overdetermination based on boundary measurements has been used in [29,30]. The authors in [29] derived
an explicit formula for the Fréchet gradient of the cost functional, which has been minimized by conjugate gradient method.

The added value of this paper relies on the global (in time) solvability of the ISP along with a nonlinear evolutionary BC
and on the designed numerical scheme for approximations. Novelty counts on reformulating of the ISP into an appropriate
direct (non-local) formulation. We propose an attractive variational technique based on two steps. First, we eliminate h from
(1) by (2), which turns out to be possible for a sufficiently smooth solution. Then we prove the well-posedness of the prob-
lem. The proposed numerical scheme involves the semi-discretization in time by Rothe’s method cf. [32,33]. We show the
existence of approximations at each time step of the time partitioning in Lemma 3.1 and we derive suitable stability results.
The convergence of approximations towards the exact solution is investigated in Theorem 3.1 in suitable function spaces and
the error estimates are derived in Theorem 3.2.

Notations. Denote by �; �ð Þ the standard inner product of L2ðXÞ and �k k its induced norm. When working at the boundary C

we use a similar notation, namely �; �ð ÞC; L
2ðCÞ and �k kC. By C ½0; T�;Xð Þ we denote the set of abstract functions w : ½0; T� ! X

endowed with the usual norm maxt2½0;T� �k kX and Lp ð0; TÞ;Xð Þ is furnished with the norm
R T

0 �k k
p
Xdt

� �1
p

with p > 1, cf. [34]. The

symbol X� stands for the dual space to X. In that follows C; e and Ce denote generic positive constants depending only on the
data, where e is a small one and Ce ¼ C 1

e
� �

is a large one.
The additional measurement (2) is represented by an integral over X. Integrating/measuring (1) over X and taking into

account (2) we have

m0 �
Z

X
Du ¼ h

Z
X

f : ðMPÞ

Getting h under control means to regulate
R

X Du assuming that
R

X f – 0. Thus we need a variational framework for strong
solutions. Multiplying the PDE from (1) by a test function �Du and integrating in space we get

� @tu;Duð Þ þ Du;Duð Þ ¼ �h f ;Duð Þ:

The first term can be rewritten by Green’s theorem and the BCs as follows
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