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a b s t r a c t

In this paper, we study the spatiotemporal dynamics of a diffusive Holling–Tanner preda-
tor–prey model with discrete time delay. Via analytically and numerically analysis, we
unveil six types of patterns with and without time delay. Among them, of particular novel
is the observation of linear pattern (consisting of a series of parallel lines), whose formation
is closely related with the temporal Hopf bifurcation threshold. Moreover, we also find that
larger time delay or diffusion of predator may induce the extinction of both prey and pred-
ator. Theoretical analysis and numerical simulations validate the well-known conclusion:
diffusion is usually beneficial for stabilizing pattern formation, yet discrete time delay
plays a destabilizing role in the generation of pattern.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Pattern formation in reaction–diffusion system is an interesting and challenging problem in modern ecology, biology,
chemistry, and other science fields. The earliest study of this issue could come back to the pioneering work of Turing [1],
where the reaction–diffusion theory was proposed to inspect the range of spatial patterns observed in the developing
embryo. Immediately after this seminal idea, the reaction–diffusion model and its various underlying applications have been
intensively explored to explain pattern formation. Typical examples include patterns in fish skin, mammalian coat markings,
phyllotaxis, predator–prey systems, terrestrial vegetation, plankton and intertidal communities [2–11]. More specifically,
take the spatiotemporal model of predator–prey interactions as an instance. Patterns are mainly employed to understand
the effect of individual mobility on the stable and oscillatory states of species survival. Along this way, there has been a great
deal of accumulated achievements to enrich the spatial pattern formation within predator–prey model [12–17].

In population dynamics, the function response refers to the change in predator’s rate of prey consumption with change in
prey density. The most important and useful functional response is the Holling type II function. In line with this functional
response, another well-known proposal is the well-known Holling–Tanner predator–prey temporal (HTT) model [18], which
can well feature the realistic interactions between species in ecological systems [19,20]. Up to now, it has attracted consid-
erable attention with mathematical analysis of dynamics, such as limit cycles [21], global stability [22] and bifurcation con-
dition [23]. Moreover, it is clear that the spatial distribution of species is usually inhomogeneous. To capture this fact,
Holling–Tanner predator–prey spatiotemporal (HTS) model has been extensively investigated as well. For example, Wang
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et al. studied the spatial patterns of this model with nonlinear cross diffusion and showed the asymptotic behavior of posi-
tive solutions [24]. With respect to the impact of HTS model on pattern formation, we can also refer to literature [25–27].

Besides the aforementioned progress, the study of reaction–diffusion system coupled with time delay, which in general
exhibits more complex dynamics behavior, attracts much interest as well [28–31]. This is because delayed time will desta-
bilize the evolution and bring more fluctuation into system. However, different from time delay, diffusion usually play a sta-
bilizing role in the spatiotemporal system. In this sense, it seems very important to derive which factor will be responsible
for the inhomogeneous spatial patterns. In recent researches [32,33], the authors obtained the Turing bifurcation threshold
by considering the discrete time delay as a bifurcation parameter, which yet was just valid for small delay. While for the
delayed spatiotemporal model, it would be difficult to derive the Turing bifurcation threshold. Moreover, Piotrowska and
Banerjee derived the critical threshold for the spatiotemporal Hopf bifurcation by considering the delay as bifurcation
parameter and further analyzed the influence of time delay on spatiotemporal pattern formation [34,35].

As what we descried, various types of spatial patterns can be driven by Turing instability (namely Turing pattern). How-
ever, some other factors may also play a potential role in pattern formation. In the present work, we are interested to explore
how the discrete time delay as well as diffusion of the predator and prey affect the pattern formation. Different from the
exiting work [35], which obtains Hopf bifurcation threshold by considering the delay as the parameter, we select more
parameters and acquire more kinds of regular patters. Predator and prey in delayed HTS (DHTS) model become extinct
for large delay, otherwise show chaos behavior. In addition, it is uncovered that the coexistence or extinction of predator
and prey is more sensitive to the Hopf threshold of Delayed HTT (DHTT) model than the corresponding threshold in [35].
In the remainder of this paper, we will first describe the dynamics of HTT/DHTT model and HTS/DHTS model; subsequently,
we will present various spatial patterns and investigate how the delay and diffusion affects pattern formation; finally we will
summarize our conclusions.

2. The dynamics of temporal model

In this section, we consider the dynamics of the Holling–Tanner predator–prey temporal (HTT) model with discrete time
delay. But before this, we need to mention some brief results about HTT model without time delay. For more discussion
details, they are also available in [22].

The HTT model takes the following form:

dU
dT ¼ rU 1� U

K

� �
� cUV

Uþm ; T > 0;
dV
dT ¼ sV 1� hV

U

� �
; T > 0;

(
ð1Þ

subjecting to positive initial condition Uð0Þ; Vð0Þ > 0. Here UðTÞ and VðTÞ stand for the density of prey and predator. The
meaning of positive constants r; K; c; m; s; h are given in Table 1. For simplicity, we can also write the model (1) into non-
dimensional form. Assuming
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K
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then Eq. (1) becomes

du
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:

(
ð2Þ

Simple computation reveals that, apart from the saddle point E0ð1;0Þ, the model (2) possess a unique positive equilibrium
point E�ðu�;v�Þ, where

u� ¼
ðb� ab� cÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� ab� cÞ2 þ 4ab2

q
2b

; v� ¼ c
b

u�: ð3Þ

It is not difficult to find that 0 < u� < 1; 0 < v� < c
b. The Jacobian matrix evaluated for the system (2) at E� is given by

Table 1
The meaning of some constants in (1).

r Prey intrinsic growth rate

K Carrying capacity
c Capturing rate
m Half capturing saturation constant
s Predator intrinsic growth rate
h Conversion rate of prey into predators biomass
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