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a b s t r a c t

There are numerous measures designed to evaluate quality of a given data grouping in
terms of its distinctness and between-cluster separation. However, there seems to be no
efficient method to assess distinctness of the intrinsic structure within data (clusterability)
before actual clustering is determined. Based on recent findings, we propose such measure
in terms of covariance matrix decomposition for appropriately transformed data. The data
is assumed to come from a Gaussian mixture model. The transformation reshapes the data
so that unsupervised technique of principal component analysis is able to uncover
information directly indicative of the data clusterability characteristics. In this work we
propose the measure and explain the motivation as well as the relation to supervised struc-
ture distinctness coefficients. We also show how the measure can be applied for number of
clusters and feature selection tasks.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

1.1. State-of-the-art

Literature on clusterability and related distinctness assessment problems suffers from inconsistent and ambiguous termi-
nology. What can be currently found under the term of clusterability is gathered in [1]. The indices analyzed there though,
are meant to assess a given data partition, while the term clusterability should rather be confined to measures that are
partition-independent. It should refer to assessing the possibility to cluster efficiently rather than to quality evaluation of
a previously determined solution. In what follows, we will follow this distinction and refer to measures based on certain par-
tition as structure distinctness coefficients. In other words, for structure distinctness coefficients we will require the model
parameters to be known or estimated. The term clusterability we will use exclusively to refer to measures that do not need
this kind of information and therefore can operate on raw data, without the knowledge of partition in particular. Based on
some of the indices of [1], partition-independent measures can be obtained, as it was done for instance in [2]. Somewhat
unfortunately, this heuristic method tends to fail in actual applications when the number of dimensions increases. More
formal inspiration for clusterability analysis is provided by considerations on the number of clusters (main references
include [3–6]) and component overlap analysis for mixtures of normal distributions (see [7–10]). However, both approaches
originally assume the underlying partition to be already determined.

Direct inspiration for this work comes from a series of works on learning mixture parameters in a selected subspace. It
started with the challenge of random projections considered first in one-dimensional space – by Kalai et al. [11] for two and

http://dx.doi.org/10.1016/j.amc.2014.12.038
0096-3003/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ewa.nowakowska@ipipan.waw.pl (E. Nowakowska), jacek.koronacki@ipipan.waw.pl (J. Koronacki), stan.lipovetsky@gfk.com

(S. Lipovetsky).

Applied Mathematics and Computation 256 (2015) 591–601

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.12.038&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.12.038
mailto:ewa.nowakowska@ipipan.waw.pl
mailto:jacek.koronacki@ipipan.waw.pl
mailto:stan.lipovetsky@gfk.com
http://dx.doi.org/10.1016/j.amc.2014.12.038
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


Moitra and Valiant [12] for arbitrary number of clusters. Then [13] suggested random projections to substantially lower
potentially more than one-dimensional subspace based on Johnson–Lindenstrauss (concentration) theorem. In [14] some
of the distributional assumptions were relaxed but as the concentration theorem was still used, the assumption of high ini-
tial cluster separation had to be maintained. This was only relaxed by Brand and Huang [15], where random projections were
replaced with spectral approach. These results were further applied and developed in [16–18]. The key insight for this work
comes from [19], where a preliminary data transformation was used to enhance the unknown structure in data in order to
improve performance of a parameter learning algorithm. This proved that it is possible to use the structure in data without
actually knowing it and inspired [20], which in turn became the basis for the clusterability assessment method proposed in
this work.

1.2. Model and notation

We assume that the data X ¼ ðx1; . . . ; xnÞT ; X 2 Rn�d – consisting of n observations – comes from a mixture of k d-dimen-
sional normal distributions

f ðxÞ ¼ p1f 1ðl1;R1ÞðxÞ þ � � � þ pkf kðlk;RkÞðxÞ;

where

f lðll;RlÞðxÞ ¼
1
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We refer to each f lðll;RlÞ; l ¼ 1; . . . ; k as a component of the mixture (see [21] or [22] for model details and [23] or [24] for
example alternatives). We call pl; l ¼ 1; . . . ; k a mixing factor of the corresponding component. We assume equal mixing fac-
tors for all the components p1 ¼ � � � ¼ pk ¼ 1

k, however we allow different covariance matrices Rl. Additionally we assume the
space dimension to be large with respect to the number of components d > k� 1. We also assume the number of observa-
tions is large with respect to d or k, that is n� d. We take the number of components k as known, which puts no constrains
on our considerations they can easily be repeated for all k within the range of interest.

We assume the cluster centers to be independent in terms of point independence. Also, we assume covariance matrix to
be of full rank, RX ¼ d. Let TX ¼ nRX be the total scatter matrix for X. We say that data is in isotropic position if lX ¼ 0 and
TX ¼ I. We recall the known fact that TX ¼WX þ BX , which decomposes the total scatter to its within ðWXÞ and between
ðBXÞ cluster components. For notation ease we will often assume the data is centered and the origin and indicate that with
a zero subscript X0 or Z0.

A cluster – or a class – is understood as a subset of observations that are similar (close in the space) to one another but
different (far in the space) from other observations. A grouping that divides observations into clusters is called a cluster solu-
tion or a cluster structure. To set up a link between the theoretical model and the data, we assume that each mixture com-
ponent corresponds to one cluster.

By PCðk� 1Þwe denote the subspace spanned by the first k� 1 principal components (i.e. k� 1 eigenvectors of the matrix
RX corresponding to its k� 1 largest eigenvalues). By S� we denote the Fisher’s discriminant (Fisher’s subspace), which is a
ðk� 1Þ-dimensional subspace that best discriminates k given classes as

S� ¼ argmax
S�Rd

dimðSÞ¼k�1

Pk�1
j¼1 vT

j BXv jPk�1
j¼1 vT

j TXv j

; ð1Þ

where v1; . . . ;vk�1 is the orthonormal basis for S. Details are given in [25], while the concept is discussed in [21]. In the
course of the work we will use the known result that S� may be represented as a solution of an eigenproblem defined by
T�1

X BX . The proof under the assumed model can be found in [26].
Following [20], we define structure distinctness coefficient in terms of Fisher’s discriminant as

�kX ¼ 1
k� 1

Xk�1

j¼1

k
T�1

X BX

j ; ð2Þ

which is the average eigenvalue over k� 1 largest eigenvalues of the T�1
X BX eigenproblem and the mean variability in the

Fisher’s subspace at the same time. As [26] shows, (2) well reflects the behavior of the generic integral overlap measure (also
referred to as MLE-misclassification rate) while possessing the advantage of being analytically tractable at the same time. It
allows it to be included in formal derivations and the analysis of the system behavior.

1.3. Concept and related results

The idea of clusterability assessment proposed here is based on the results obtained and presented in [20]. In this work a
data transformation is derived that preserves structure distinctness – as defined by (2) – up to a negligible error. The trans-
formation consists of two steps – isotropic transformation and weighting. The first step de-correlates the data – it can easily
be shown (see for instance [20]) that the following transformation brings the data to isotropic position so lY ¼ 0 and TY ¼ I
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