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a b s t r a c t

For a graph GðV ; EÞ that models a facility or a multi-processor network, detection devices
can be placed at vertices so as to identify the location of an intruder such as a thief or fire
or saboteur or a faulty processor. Resolving-power dominating sets are of interest in elec-
tric networks when the latter helps in the detection of an intruder/fault at a vertex. We
define a set S # V to be a resolving-power dominating set of G if it is resolving as well as
a power-dominating set. The minimum cardinality of S is called resolving-power domina-
tion number. In this paper, we show that the problem is NP-complete for arbitrary graphs
and that it remains NP-complete even when restricted to bipartite graphs. We provide
lower bounds for the resolving-power domination number for trees and identify classes
of trees that attain the lower bound. We also solve the problem for complete binary trees.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

A dominating set of a graph GðV ; EÞ is a set S of vertices such that every vertex (node) in V n S has at least one neighbor in S.
The problem of finding a dominating set of minimum cardinality is an important problem that has been extensively studied.
The minimum cardinality of a dominating set of G is its domination number, denoted by cðGÞ [5]. In a connected graph G, the
distance dðu;vÞ between two vertices u;v 2 V is the length of a shortest path between them. Let W ¼ fw1;w2 . . . wkg be an
ordered set of vertices of G and let v be a vertex of G. The representation rðvjWÞ of v with respect to W is the k-tuple
ðdðv ;w1Þ; dðv ;w2Þ . . . dðv;wkÞÞ. If distinct vertices of G have distinct representations with respect to W, then W is called a
locating/resolving set for G [10,2]. A resolving set of minimum cardinality is called a metric basis for G and this cardinality
is the metric dimension of G, denoted by dimðGÞ [3]. A set S # V is called a metric-locating-dominating set if the set S is both
a locating as well as a dominating set. The minimum cardinality of such a set is called metric-locating-domination number
denoted by gðGÞ [6]. Our focus is on a variation called the resolving-power dominating set (RPDS) problem. For a vertex v
of G, let NðvÞ and N½v � denote the open and closed neighborhoods of v respectively. For a set S, let NðSÞ ¼ [v2SNðvÞ n S and
N½S� ¼ NðSÞ [ S denote the open and close neighborhoods of S respectively. For vertices x; y 2 V , let the notation x � y mean
that x is adjacent to y.

The power domination problem arose in the context of monitoring electric power networks. A power network contains a
set of nodes and a set of edges connecting the nodes. It also contains a set of generators, which supply power, and a set of
loads, where the power is directed to. In order to monitor a power network we need to measure all the state variables of the
network by placing measurement devices. A Phase Measurement Unit (PMU) is a measurement device placed on a node that
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has the ability to measure the voltage of the node and current phase of the edges connected to the node. The goal is to install
the minimum number of PMUs such that the whole system is monitored. This problem has been formulated as a graph dom-
ination problem by Haynes et al. in [4]. However, this type of domination is different from the standard domination type
problem, since the domination rules can be iterated. The propagation rules are derived from the Ohm’s and Kirchoff’s laws
for an electric circuit.

Let the graph GðV ; EÞ represent an electric power system, where a vertex represents an electrical component such as a
PMU and an edge represents a transmission line joining two electrical nodes. A PMU measures the state variable for the ver-
tex at which it is placed as well as its incident edges and their end vertices (these vertices and edges are said to be observed).

The other observation rules are as follows:

1. Any vertex that is incident to an observed edge is observed.
2. Any edge joining two observed vertices is observed.
3. If a vertex is incident to a total of k > 1 edges and if k� 1 of these edges are observed, then all k of these edges are

observed.

A set S # V is called a power dominating set (PDS) of G if every vertex and edge of G are observed. The power domination
number cpðGÞ is the minimum cardinality of a PDS of G. A PDS of G with the minimum cardinality is called a cpðGÞ-set. Since
any dominating set is a power dominating set, 1 6 cpðGÞ 6 cðGÞ for all graphs G [4].

A set S # V is called a resolving-power dominating set if the set S is both a resolving as well as a power dominating set. The
minimum cardinality of such a set is called resolving-power domination number denoted by gpðGÞ. We shall illustrate with an
example.

In the example in Fig. 1, dimðGÞ ¼ 2; cpðGÞ ¼ 2;gðGÞ ¼ 4 and gpðGÞ ¼ 3.
The following results are straight forward.

Theorem 1.1. maxfcpðGÞ; dimðGÞg 6 gpðGÞ 6 cpðGÞ þ dimðGÞ.

Proof. Suppose gpðGÞ < maxfcpðGÞ; dimðGÞg. Let S # V be a resolving-power dominating set of cardinality gpðGÞ. But this is a
contradiction to the definition of cpðGÞ and dimðGÞ. Consider a set S which comprises of all vertices in metric basis B and all
vertices in the power dominating set D. It is easy to see that S is a resolving-power dominating set. Thus,
gpðGÞ 6 cpðGÞ þ dimðGÞ

Theorem 1.2. gpðGÞ ¼ 1 if and only if G is a path.

Proof. If G is a path, then by Theorem 1.1, gpðGÞP 1. For the reverse inequality, it is easy to see that any pendant vertex of G
is a RPDS.

Suppose now gpðGÞ ¼ 1 and G is not a path. Then G is either a cycle or has a vertex v such that dðvÞP 3. In both cases, by
Theorem 1.1, gpðGÞP 2, a contradiction to the assumption.

Theorem 1.3. gpðGÞ ¼ n� 1 if and only if G is the complete graph Kn.

Proof. If G is Kn, then by Theorem 1.1, gpðGÞP n� 1. This is due to the fact that dimðKnÞ ¼ n� 1; cpðKnÞ ¼ 1 and choosing
any set of n� 1 vertices of Kn would be a resolving-power dominating set. Conversely assume that gpðGÞ ¼ n� 1 and

(i) (ii) (iii) (iv)

Fig. 1. Square bullets depict (i) metric basis (ii) minimum power dominating set (iii) minimum metric-locating-dominating set and (iv) minimum
resolving-power-dominating set of G.
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