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a b s t r a c t

In this paper, we consider a class of cubic planar polynomial differential system with
non-rational first integral. Using the averaging method at any order, we bound the
maximum number of limit cycles which bifurcate from the periodic annulus of the origin
when we perturb them inside the class of all polynomial systems of degree n.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main results

In the qualitative theory of real planar polynomial differential system, the bifurcation and distribution of limit cycles have
been extensively considered in literature, see for instance [4,10]. Limit cycles can bifurcate through many different methods.
One of the main methods is perturbing a system which has a center via Poincaré bifurcation, in such a way that limit cycles
bifurcate in the perturbed system from the period annulus of the center for the unperturbed system. There are several papers
considering the number of limit cycles which bifurcate from the center with rational first integral, see [9] and the references
therein. Generally speaking, if the first integral is rational, the integrands of averaged functions are rational, see for instance
(6) of [7]. As far as we know, there are only few papers dealing with the limit cycles which bifurcate from the periodic
annulus of a center with non-rational first integral, see for instance [2,11,12,14].

One of the good tools for studying the number of limit cycles is the averaging method [16,17]. Roughly speaking,
averaging method gives the qualitative relation between the number of limit cycles for differential system and the number
of zeros for the averaged function. There are several papers [1,3,6] where the averaging method is extended to study the
number of limit cycles which bifurcate from the unperturbed system with an invariant manifold of periodic solutions. In
the paper [1], the authors obtain the first order averaged function. If this function vanishes, then the number of limit cycles
of perturbed systems depends on the second order averaged function. The authors of the paper [3] consider the second order
averaged function. In a recent paper [6], the authors deduce the expression of the averaged function at any order. It is
noteworthy that averaging method provides not all the limit cycles, but only provides the limit cycles which generated
via Poincaré bifurcation (e.g., [7]) or Hopf bifurcation (e.g., [13]). Moreover, the authors [5] apply averaging method to study
the center-focus problem for some analytical planar differential systems.

In the present paper, we consider the following planar polynomial differential system
dx
dt ¼ �yð3x2 þ y2Þ þ ef ðx; yÞ;
dy
dt ¼ xðx2 � y2Þ þ egðx; yÞ;

ð1Þ
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where f ðx; yÞ and gðx; yÞ are real polynomials of degree n in the variables x and y. Note that the unperturbed system ð1Þe¼0 has

a non-rational first integral Hðx; yÞ ¼ ðx2 þ y2Þ exp � 2x2

x2þy2

� �
with integral factor lðx; yÞ ¼ 2

x2þy2 exp � 2x2

x2þy2

� �
. The origin is a

global center for the unperturbed system.
System (1) has been studied in the papers [2,14]. In the paper [14], up to first order averaging method, the authors prove

that there are at most ½ðn� 1Þ=2� limit cycles bifurcating from the periodic annulus of the origin for system (1), where ½g�
denotes the integer part of real number g. Moreover, this bound is sharp. Later on, using the second order averaging method,
the authors of the paper [2] show that there are at most 2 limit cycles bifurcating from the periodic annulus surrounding the
origin of system (1) with n ¼ 3.

Motivated by the above two papers, in this paper, using the averaging method at any order given by [6], we bound the
number of limit cycles which bifurcate from the periodic annulus surrounding the origin of system (1). Our result is the
following one:

Theorem 1. Consider system (1) with jej > 0 sufficiently small. Let HkðnÞ denote the maximum number of limit cycles which
bifurcate from the periodic annulus surrounding the origin of system (1) via k order averaging method, then

(i) H1ðnÞ ¼ n�1
2

� �
;

(ii) HkðnÞ 6 kn; k P 2.

Remark 2. Though statement (i) has been already contained in the paper [14], we include it in our theorem for the sake of
completeness.

In the paper [2], using the second order averaging method, the authors obtain that H2ð3Þ ¼ 2. However, our results show
that H2ð3Þ 6 6. It is obvious that this upper bound is not sharp. In order to obtain the sharp upper bound of the number of
zeros for second order averaged function, we should impose that the first order averaged function vanishes identically, see
for instance [2,15]. In general, the problem of deducing the sharp upper bound of averaged function at any order is very
difficult, see for instance [8,18].

The organization of this paper is as follows. In Section 2, we introduce the averaging method at any order. In Section 3, we
prove Theorem 1.

2. Averaging method at any order

In this section, we state the averaging method at any order given in [6].Consider the following differential equation

dr
dh
¼ F0ðh; rÞ þ

X
kP1

ekFkðh; rÞ; ð2Þ

where r 2 R; h 2 S1, and e 2 ð�e0; e0Þ with e0 a sufficiently small positive value. The functions Fkðh; rÞ are 2p-periodic in the
variable h.

Let r0ðh; zÞ be a particular solution of the unperturbed system ð2Þe¼0, satisfying that r0ð0; zÞ ¼ z 2 I with I a real open
interval. We denote by reðh; zÞ the solution of (2) with initial condition reð0; zÞ ¼ z – 0. Due to the fact that the differential
Eq. (2) is analytic, the solution can be written as

reðh; zÞ ¼ r0ðh; zÞ þ
X
kP1

ekrkðh; zÞ: ð3Þ

Let u ¼ uðh; zÞ be the solution of the following variational equation

@u
@h
¼ @F0

@r
h; r0ðh; zÞð Þu; ð4Þ

satisfying the initial condition uð0; zÞ ¼ 1.
The next result provides explicit expressions of the function rkðh; zÞ for any value of k.

Theorem 3. The solution (3) of Eq. (2) satisfies rkðh; zÞ ¼ uðh; zÞukðh; zÞ with

u1ðh; zÞ ¼
R h

0
F1 u;r0ðu;zÞð Þ

uðu;zÞ du;

ukðh; zÞ ¼
R h

0
Fk u;r0ðu;zÞð Þ

uðu;zÞ þ
Xk�2

l¼0

Xk�l

i¼1

1
i!
@iFk�l�i
@ri u; r0ðu; zÞð Þ

 

uðu; zÞi�1
X

j1þj2þ���þji¼lþi

uj1 ðu; zÞuj2 ðu; zÞ � � �uji ðu; zÞ

1
Adu;

ð5Þ
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