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In this paper, we establish some new refinements and similar extensions of Hermite–
Hadamard inequality for fractional integrals and present several applications in the Beta
function.
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1. Introduction

Throughout this paper, let a < b in R.
The inequality
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which holds for all convex functions f : ½a; b� ! R, is known in the literature as Hermite–Hadamard inequality [7].
For some results which generalize, improve, and extend the inequality (1.1), refer to [1–6,8–18].
In [4], Dragomir and Agarwal established the following results connected with the second inequality in the inequality (1.1 ).

Theorem A. Let f : ½a; b� ! R be a differentiable function on ða; bÞ with a < b. If j f 0 j is convex on ½a; b�, then we have

f ðaÞ þ f ðbÞ
2

� 1
b� a

Z b

a
f ðxÞdx

�����
����� 6 b� a

8
j f 0ðaÞ j þ j f 0ðbÞ j
� �

; ð1:2Þ

which is the trapezoid inequality provided that j f 0 jis convex on ½a; b�.
In [12], Kirmaci and Özdemir established the following results connected with the first inequality in the inequality (1.1 ).

Theorem B. Under the assumptions of Theorem A, we have
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which is the midpoint inequality provided that j f 0 j is convex on ½a; b�.
In what follows we recall the following definition [13].
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Definition 1. Let f 2 L1½a; b�. The Riemann–Liouville integrals Jaaþ f and Jab� f of order a > 0 with a P 0 are defined by

Jaaþ f ðxÞ ¼ 1
C að Þ

Z x

a
x� tð Þa�1f ðtÞdt ðx > aÞ

and

Jab� f ðxÞ ¼ 1
C að Þ

Z b

x
t � xð Þa�1f ðtÞdt ðx < bÞ;

respectively. Here, C að Þ is the Gamma function and J0
aþ f ðxÞ ¼ J0

b� f ðxÞ ¼ f ðxÞ.
In [13], Sarikaya et al. established the following Hermite–Hadamard-type inequalities for fractional integrals:

Theorem C. Let f : ½a; b� ! R be positive with 0 6 a < b and f 2 L1½a; b�. If f is a convex function on ½a; b�, then
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for a > 0.

Theorem D. Under the assumptions of Theorem A, we have the following Hermite–Hadamard-type inequality for fractional
integrals:
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for a > 0.
In [9], Hwang et al. established the following fractional integral inequality:

Theorem E. Under the assumptions of Theorem A, we have the following Hermite–Hadamard-type inequality for fractional
integrals:
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Remark 1.

(1) The assumption f : ½a; b� ! R is positive with 0 6 a < b in Theorem C can be weakened as f : ½a; b� ! R witha < b.
(2) In Theorem D, let a ¼ 1. Then Theorem D reduces to Theorem A.
(3) In Theorem E, let a ¼ 1. Then Theorem E reduces to Theorem B.

In this paper, we establish some new inequalities which refine Hermite–Hadamard inequality (1.1) and Hermite–Hadamard-
type inequality (1.4), and we obtain some similar extensions of Theorems A, B, D, E. Some applications for the Beta function
are given.

2. New refinements of Hermite–Hadamard-type inequality for fractional integrals

Theorem 1. Let f : ½a; b� ! R be a convex function with a < b. Then we have the inequality

f
aþ b

2

� �
6

3a � 1
4a f

aþ b
2

� �
þ 4a � 3a þ 1

2 � 4a f
3aþ b

4

� �
þ f

aþ 3b
4

� �	 

6

C aþ 1ð Þ
2 b� að Þa

Jaaþ f ðbÞ þ Jab� f ðaÞ
� �

6
3a � 1
2 � 4a f

3aþ b
4

� �
þ f

aþ 3b
4

� �	 

þ 4a � 3a þ 1

2 � 4a f ðaÞ þ f ðbÞ½ � 6 f ðaÞ þ f ðbÞ
2

ð2:1Þ

for a > 0.
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