Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/amc

Some equivalent conditions for block two-by-two matrices to be nonsingular

Hongxing Wang*

Department of Mathematics, Huainan Normal University, Anhui 232001, PR China Guangxi Key Laboratory of Hybrid Computational and IC Design Analysis, Nanning 530006, PR China

ARTICLE INFO

Mathematics Subject Classifications (2000): 15A24 15A29

Keywords: Block two-by-two matrix Nonsingularity Rank

ABSTRACT

In this paper, we derive some equivalent conditions for block two-by-two matrices to be nonsingular in an elementary way.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, $\mathbb{C}^{m \times n}$ (resp., $\mathbb{R}^{m \times n}$) stands for the set of m by n matrices with complex (resp., real) entries; rank(A) stands for the rank of a matrix $A \in \mathbb{C}^{m \times n}$; $[A \ B]$ denotes a row block matrix consisting of A and B. For integers $m \ge 1$ and $1 \le k \le m$, let $\chi_{k,m}$ denote the set

 $\{\alpha : \alpha = (\alpha_1, \ldots, \alpha_k), 1 \leq \alpha_1 < \cdots < \alpha_k \leq m, \text{ where } \alpha_1, \ldots, \alpha_k \text{ are integers} \}.$

For $A = (a_{ij}) \in \mathbb{C}^{m \times n}$, let $\alpha = (\alpha_1, \dots, \alpha_s) \in \chi_{s,m}$ and $\beta = (\beta_r, \dots, \beta_t) \in \chi_{t,n}$, then the symbol $A_{\alpha,\beta}$ denotes the $s \times t$ submatrix of A determined by rows indexed by α and columns indexed by β , especially, write $A_{\alpha,\rho}(\text{resp.}, A_{\rho,\beta}) = A_{\alpha,\beta}$ when $|\beta| = n(\text{resp.}, |\alpha| = m)$. The symbol $A_{\alpha,\beta}^{-1}$ denotes the inverse of $A_{\alpha,\beta}$, when $|\alpha| = |\beta|$ and $A_{\alpha,\beta}$ is nonsingular. And we can construct two special matrices P_{α} a $s \times m$ matrix with 1 in positions $(1, \alpha_1), \dots, (s, \alpha_s)$ and 0 elsewhere, and Q_{β} an $n \times t$ matrix with 1 in positions $(\beta_1, 1), \dots, (\beta_t, t)$ and 0 elsewhere. It follows that $P_{\alpha}A = A_{\alpha,\rho}, AQ_{\beta} = A_{\rho,\beta}$ and $P_{\alpha}AQ_{\beta} = A_{\alpha,\beta}$. For any given $\alpha = (\alpha_1, \dots, \alpha_k) \in \chi_{k,m}$ we denotes

 $\alpha^c = \{1, \ldots, m\} \setminus \alpha.$

It is obviously that A_{α^c,β^c} is the $(m-s) \times (n-t)$ submatrix obtained from A by deleting rows indexed by α and columns indexed by β , and

$$\begin{bmatrix} P_{\alpha} \\ P_{\alpha^c} \end{bmatrix} \in \mathbb{C}^{m \times m} \text{ and } \begin{bmatrix} Q_{\beta} & Q_{\beta^c} \end{bmatrix} \in \mathbb{C}^{n \times n}$$

are nonsingular. Let $\chi_{0,m}$ denote a null set, especially, when $\alpha \in \chi_{0,m}, \alpha^c = \{1, \dots, m\}$.

* Address: Department of Mathematics, Huainan Normal University, Anhui 232001, PR China.

http://dx.doi.org/10.1016/j.amc.2014.10.047 0096-3003/© 2014 Elsevier Inc. All rights reserved. In the literature, the problem of examining the nonsingularity of

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
(1.1)

have been studied, where $A \in \mathbb{C}^{m \times m}$, $B \in \mathbb{C}^{m \times n}$, $C \in \mathbb{C}^{n \times m}$ and $D \in \mathbb{C}^{n \times n}$. Decker and Keller [7] obtained some necessary and sufficient conditions for guaranteeing the nonsingularity of the matrix M. Especially, the matrix M is nonsingular if and only if its Schur complement

$$S = D - CA^{-1}B$$

is nonsingular, and rank(M) = rank(A) + rank(S), when the matrix A is nonsingular. Benzi et al. [6] derived a necessary and sufficient condition for M to be nonsingular, when $A \in \mathbb{R}^{m \times m}$ is symmetric positive semidefinite, $C = B^T \in \mathbb{R}^{n \times m}$ has full rank, and D = 0. Recently, Bai and Bai [1] and Bai [2] obtained some necessary and sufficient conditions for guaranteeing the nonsingularity of the matrix M, respectively. A detailed discussion of the block two-by-two matrix M defined in (1.1) and its applications can be found in [1,3,5,8–11, etc].

In this paper, we will study the nonsingularity of *M* in an elementary way.

Lemma 1.1. [4] Let $A \in \mathbb{C}^{m \times n}$, rank $(A) = r, r \ge 1$, $\alpha \in \chi_{r,m}$ and $\beta \in \chi_{r,n}$. If $A_{\alpha,\rho}$ is of full row-rank, and $A_{\rho,\beta}$ is of full column-rank, then $A_{\alpha,\beta}$ is nonsingular.

Note that, there are many ways to choose $\alpha \in \chi_{r,m}$ such that $A_{\alpha,\rho}$ is a full row-rank matrix, for example, Gaussian elimination, QR Factorization, Singular Value Decomposition (SVD), etc. However, numerically, Gaussian elimination may be unreliable. QR decomposition with pivoting may be a more numerically robust than Gaussian elimination. The SVD is computationally feasible and numerically stable, and is more effective. It seems that the SVD is a good choice.

2. Main results

Theorem 2.1. Assume that the (1,1) block $A \in \mathbb{C}^{m \times m}$ of the block two-by-two matrix $M \in \mathbb{C}^{(m+n) \times (m+n)}$ defined in (1.1) is zero. Then

$$\operatorname{rank}(M) = \operatorname{rank}(B) + \operatorname{rank}(C) + \operatorname{rank}(\widetilde{D_1}), \tag{2.1}$$

where

$$\widetilde{D_{1}} = D_{\varsigma^{c},\tau^{c}} - D_{\varsigma^{c},\tau}B_{\varsigma_{1},\tau}^{-1}B_{\varsigma_{1},\tau^{c}} - C_{\varsigma^{c},\tau_{1}}C_{\varsigma,\tau_{1}}^{-1}D_{\varsigma,\tau^{c}} + C_{\varsigma^{c},\tau_{1}}C_{\varsigma,\tau_{1}}^{-1}D_{\varsigma,\tau_{1}}B_{\varsigma_{1},\tau^{c}},$$
(2.2)

 $\operatorname{rank}(C) = r_1, \operatorname{rank}(B) = r_2, \ \varsigma \in \chi_{r_1,n}, \ \tau_1 \in \chi_{r_1,m}, \ \varsigma_1 \in \chi_{r_2,m} \ and \ \tau \in \chi_{r_2,n} \ such \ that \ C_{\varsigma,\tau_1} \ and \ B_{\varsigma_1,\tau} \ are \ nonsingular.$

Proof. Denote rank(C) = r_1 and rank(B) = r_2 . Let $\varsigma \in \chi_{r_1,n}$, $\tau_1 \in \chi_{r_1,m}$, $\varsigma_1 \in \chi_{r_2,m}$ and $\tau \in \chi_{r_2,n}$ such that C_{ς,τ_1} and $B_{\varsigma_1,\tau}$ are non-singular. Write

$$\begin{split} P_1 &= \begin{bmatrix} P_{\varsigma} \\ P_{\varsigma^c} \end{bmatrix} \in \mathbb{C}^{n \times n}, \quad Q_1 = \begin{bmatrix} Q_{\tau_1} & Q_{\tau_1^c} \end{bmatrix} \in \mathbb{C}^{m \times m}, \\ P_2 &= \begin{bmatrix} P_{\varsigma_1} \\ P_{\varsigma_1^c} \end{bmatrix} \in \mathbb{C}^{m \times m}, \quad Q_2 = \begin{bmatrix} Q_{\tau} & Q_{\tau^c} \end{bmatrix} \in \mathbb{C}^{n \times n}. \end{split}$$

Then P_1 , Q_1, P_2 and Q_2 are nonsingular,

$$P_{2}BQ_{2} = \begin{bmatrix} P_{\varsigma_{1}} \\ P_{\varsigma_{1}} \end{bmatrix} B[Q_{\tau} \quad Q_{\tau^{c}}] = \begin{bmatrix} B_{\varsigma_{1},\tau} & B_{\varsigma_{1},\tau^{c}} \\ B_{\varsigma_{1}^{c},\tau} & B_{\varsigma_{1}^{c},\tau^{c}} \end{bmatrix},$$

$$P_{1}CQ_{1} = \begin{bmatrix} P_{\varsigma} \\ P_{\varsigma^{c}} \end{bmatrix} C[Q_{\tau_{1}} \quad Q_{\tau_{1}^{c}}] = \begin{bmatrix} C_{\varsigma,\tau_{1}} & C_{\varsigma,\tau_{1}^{c}} \\ C_{\varsigma^{c},\tau_{1}} & C_{\varsigma^{c},\tau_{1}^{c}} \end{bmatrix},$$

$$P_{1}DQ_{2} = \begin{bmatrix} P_{\varsigma} \\ P_{\varsigma^{c}} \end{bmatrix} D[Q_{\tau} \quad Q_{\tau^{c}}] = \begin{bmatrix} D_{\varsigma,\tau} & D_{\varsigma,\tau^{c}} \\ D_{\varsigma^{c},\tau} & D_{\varsigma^{c},\tau^{c}} \end{bmatrix}$$

and

$$\begin{array}{ccc} P_2 & 0 \\ 0 & P_1 \end{array} \begin{bmatrix} 0 & B \\ C & D \end{bmatrix} \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & B_{\zeta_1,\tau} & B_{\zeta_1,\tau^c} \\ 0 & 0 & B_{\zeta_1^c,\tau} & B_{\zeta_1^c,\tau^c} \\ C_{\zeta,\tau_1} & C_{\zeta,\tau_1^c} & D_{\zeta,\tau} & D_{\zeta,\tau^c} \\ C_{\zeta^c,\tau_1} & C_{\zeta^c,\tau_1^c} & D_{\zeta^c,\tau} & D_{\zeta^c,\tau^c} \end{bmatrix}.$$

Download English Version:

https://daneshyari.com/en/article/6420748

Download Persian Version:

https://daneshyari.com/article/6420748

Daneshyari.com