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a b s t r a c t

Tension spline method is proposed for the non-linear Fisher equation with initial-boundary
values. The three time-level implicit method based on the non-polynomial cubic tension
spline is developed for the solution of the non-linear reaction–diffusion equation. The
method involves the parameters and its order can be increased from Oðk2 þ k2h2 þ h2Þ to
Oðk2 þ k2h2 þ h4Þ by an appropriate choice of the parameters. The stability of proposed
method is analyzed. Finally, numerical results are presented to demonstrate the accuracy
and efficiency of this method.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The problems of the propagation of non-linear waves have fascinated scientists over the years [11,21]. Non-linear waves
have been described by modern theories and have been coherent structured in a diverse variety of fields, including plasma,
atmosphere and oceans, random media, energy particle physics, combustion, heat and mass transfer, biology, animal
dispersal, chemical reactions, non-linear electrical circuits and general relativity and recently it has been acknowledged
in the chemical biological and physical communities that the reaction–diffusion equation plays an important role in
dissipative dynamical systems. When reaction kinetics and diffusion are coupled, traveling wave of chemical concentration
can effect a biochemical change much faster than straight diffusional processes. Usually result of this reaction is reaction–
diffusion equation which is one dimensional space:

ut ¼ zuxx þ f ðuÞ; uðx; t0Þ ¼ /ðxÞ; x 2 ½L0; L1�; ð1:1Þ

uðL0; tÞ ¼ P0ðtÞ; uðL1; tÞ ¼ P1ðtÞ t0 6 t; ð1:2Þ

where z is the diffusion coefficient and f ðuÞ represents the kinetics, when

f ðuÞ ¼ auð1� ubÞ: ð1:3Þ

Reaction–diffusion equation is called Fisher equation as a model for the propagation of a mutant gene, with u denoting the
density of a advantageous. This equation is encountered in chemical kinetics [13] and population dynamics which includes
problems such as non-linear evolution of a population in a nuclear reaction. The exact solution of Eqs. (1.1) and (1.2) for
b ¼ 1 has been obtained by Wang [20] as
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and Eqs. (1.1) and (1.2) place in its simplest form as:
ut ¼ zuxx þ auð1� uÞ; ð1:5Þ

where uðx; tÞ denotes concentration of a fluid or bacteria or a particular biological cell depending upon the nature of the
model. General form of Eq. (1.5) is known as Kolmogorov–Petrovskii–Piscounov equation [12] given by

ut ¼ zuxx þ f ðuÞ;

where f ðuÞ is a sufficiently smooth function of u.
Reduces to the well-known Huxley equation when f ðuÞ is a polynomial of u in order three and is given by

ut ¼ zuxx þ u2ð1� uÞ: ð1:6Þ
This equation has been studied for neural model by Hodgkin and Huxley [8] and Kolmogorov [12]. Some numerical methods
such as: quasi-linearization method, Crank–Nicolson formulation, implicit formulation, predictor–corrector explicit method,
time-linearization method,. . ., are used for solving the Fisher equation. These method are compared with each other, by
Aggarwal et al. [1]. In [2] the exact solution of generalized Fisher equation has been studied, also in [4] has been tried to find
exact and numerical solutions of the generalized Fisher equation. A complete description of lie paint symmetry methods to
exploit the invariance properties of the partial differential equations (PDEs) can be found in [9,15,19,22–29]. These methods
applied for Fisher equation in [21]. This equation was first studied by Fisher [6,7]. Homotopy perturbation method is used for
Fisher’s equation and its generalized [14]. Author’s studied variational method for Fishers’ equation [4] and employed a
modified of variational iteration method for generalized Fisher equation [9]. There has been a wide variety of numerical
methods, such as finite difference techniques, finite element methods, spectral techniques, adaptive and non-adaptive
algorithms, collocation methods,.. which have been developed for its numerical solution [10,11,18,21,30]. Among the most
recent numerical techniques for Eqs. (1.1) and (1.2) it is worth mentioning non-standard finite difference methods [11,13],
hybrid boundary integral procedure [12]. The nodal integral scheme [4] and piecewise hybrid analytical–numerical
algorithms[9]. The paper has been organized as follows: In Section 2, we study formulation and the tension spline method
for Eqs. (1.1) and (1.2) and the simplest one, Eq. (1.5). In Section 3, stability and convergence analysis of the Spline difference
method ðS:D:MÞ are presented. Numerical results are brought in Section 4. Summary of the main conclusion puts at the end
of paper. Three time level implicit method by using the non-polynomial cubic tension spline function has been developed for

solving Eqs. (1.1) and (1.2). The method involves some parameters and its order can be increased from oðk2 þ k2h2 þ h2Þ to

oðk2 þ k2h2 þ h4Þ by an appropriate choice of the parameters.

2. Formulation of the Spline difference method:

Considering Eqs. (1.1) and (1.2) in domain ½L0; L1� � ½t0; T� which is divided to an n�m mesh with the step size h ¼ L1�L0
n in

X direction and k ¼ T�t0
m in time direction. We define the set of wh ¼ fXL ¼ L0 þ lh; l ¼ 0ð1Þng and wk ¼ ftj ¼

t0 þ jk; j ¼ 0ð1Þmg, in which n and m are integers. A function as sðxÞ 2 C2½L0; L1� interpolates uðxÞ at the knots
xl; l ¼ 0;1; . . . ;n which depends on a parameter x > 0. When x! 0, sðxÞ reduces to a cubic spline (non-polynomial spline).
By defining sðxÞ in the interval ½xl; xlþ1�; l ¼ 0; . . . ;n� 1;

SðxÞ ¼ al þ blðx� x0Þ þ clðexðx�xlÞ � e�xðx�xlÞÞ þ dlðexðx�xlÞ þ e�xðx�xlÞÞ; l ¼ 0; . . . ;n; ð2:7Þ

where al; bl; cl and dl are un-known coefficients and x is the free parameter. If we set:

SðxÞ ¼ ul; Sðxlþ1Þ ¼ ulþ1; S00ðxlÞ ¼ Ml; S00ðxlþ1Þ ¼ Mlþ1; ð2:8Þ

we can develop explicit expressions for the four coefficients in (2.7) as follow:

al ¼ ul �
Ml

x2 ; bl ¼
Ml �Mlþ1 þx2ðulþ1 � ulÞ

xh
; cl ¼

2Mlþ1 � ðeh þ e�hÞMl

2x2ðeh � e�hÞ ; dl ¼
Ml

2x2 ;

where h ¼ xh. Now we use the continuity of its first derivative at mesh point ðxl;ulÞ, so the following equation is obtained:

ulþ1 � 2ul þ ul�1 ¼ h2½aMlþ1 þ 2bMl þ aMl�1�; ð2:9Þ

where

a ¼ 1
h2 1� 2h

ðeh � e�hÞ

� �
; b ¼ 1

h2

hðeh þ e�hÞ
ðeh � e�hÞ � 1

� �
:

Non-polynomial SðxÞ in (2.7) reduces into ordinary cubic spline relation in [16] when x! 0 then ða; bÞ ! ð16 ; 1
3Þ and the

relation (2.9) reduces to the following relation:

ulþ1 � 2ul þ ul�1 ¼
h2

6
Mlþ1 þ 4Ml þMl�1½ �: ð2:10Þ
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