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a b s t r a c t

We present a semi-local convergence analysis of the Gauss–Newton method for solving
convex composite optimization problems in Riemannian manifolds using the notion of
quasi-regularity for an initial point. Using a combination the L-average Lipszhitz condition
and the center L0-average Lipschitz condition we introduce majorizing sequences for the
Gauss–Newton method that are more precise than in earlier studies. Consequently, our
semi-local convergence analysis for the Gauss–Newton method has the following
advantages under the same computational cost: weaker sufficient convergence conditions;
more precise estimates on the distances involved and an at least as precise information on
the location of the solution.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this study we are concerned with the convex composite optimization problem on a Riemannian manifold. Applications
can be found in computer vision [14], machine learning [15], mathematical programming problems such as convex inclusion,
minimax problems, penalization methods, goal programming and constrained optimization (see, e.g., [3,8,11–21,24]). These
problems can be formulated like composite optimization problems.

Recently, in the elegant study by Wang, Yao and Li in [23], the notion of quasi-regularity for an initial point x0 2 Rl with
respect to inclusion problem was used to present a semilocal convergence analysis of the Gauss–Newton method on Rie-
mannian manifolds. This notion generalizes the case of regularity studied in the seminal paper by Burke and Ferris (see,
e.g.,[9]) as well as the case when d�!DFðx0Þd� C is surjective. The regularity condition was inaugurated by Robinson in
[17] (see also, e.g., [18,21,22]).

In this paper, motivated by the works in [10,12,23] and optimization considerations, we present a convergence analysis of
Gauss–Newton method on Riemannian manifolds (defined by Algorithm (GNAR) in Section 2). In [23], the convergence of
(GNAR) is based on the L-average Lipschitz conditions inaugurated by Wang [22] (to be precised in Section 2). Using a com-
bination of L-average Lipszhitz condition and a center L0-average Lipschitz condition which is a special case of the L-average
Lipschitz condition and a more precise condition to use than the L-average Lipschitz for the computation of the upper bounds
on the norm of the inverses involved we presented. In the present paper a finer convergence analysis is given, with the
advantages ðAÞ: tighter error estimates on the distances involved and the information on the location of the solution is
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at least as precise. These advantages were obtained (under the same computational cost) using the same or weaker
hypotheses.

The study is organized as follows: Section 2 contains the notions of generalized Lipschitz conditions and the majorizing
sequences for (GNAR). Semilocal convergence analysis of (GNAR) using L-average conditions is presented in Section 3. In Sec-
tion 4, numerical example to illustrate our theoretical results and favorable comparisons to earlier studies (see, e.g.,
[12,13,23]) are presented.

2. Generalized Lipschitz conditions and majorizing sequences

2.1. Gauss–Newton algorithms

The purpose of this paper is to study the convex composite optimization problem

min
x2Rl

f ðxÞ :¼ hðFðxÞÞ; ð2:1Þ

where h : Rm�!R is convex, F : Rl�!Rm is Fréchet-differentiable operator and m; l 2 NH. The study of (2.1) is very important.
On the one hand the study of (2.1) provides a unified framework for the development and analysis of algorithmic method
and on the other hand it is a powerful tool for the study of first and second-order optimality conditions in constrained opti-
mization (see, e.g., [3,7,11–21,24]). We assume that the minimum hmin of the function h is attained. Problem (2.1) is related to

FðxÞ 2 C; ð2:2Þ

where

C ¼ argminh ð2:3Þ

is the set of all minimum points of h.
A semilocal convergence analysis for Gauss–Newton method (GNA) was presented using the popular algorithm (see, e.g.,

[5,13]):

Algorithm (GNA) : ðn;D; x0Þ

Let n 2 ½1;1½;D 2�0;1� and for each x 2 Rl, define DDðxÞ by

DDðxÞ ¼ fd 2 Rl : kdk 6 D; hðFðxÞ þ DFðxÞdÞ 6 hðFðxÞ þ DFðxÞd0Þ
for all d0 2 Rl with kd0k 6 Dg:

ð2:4Þ

Let also x0 2 Rl be given. Having x0; x1; . . . ; xk (k P 0), determine xkþ1 by:
If 0 2 DDðxkÞ, then STOP;

If 0 R DDðxkÞ, choose dk such that dk 2 DDðxkÞ and

kdkk 6 ndð0;DDðxkÞÞ: ð2:5Þ

Then, set xkþ1 ¼ xk þ dk.

Here, dðx;WÞ denotes the distance from x to W in the finite dimensional Banach space containing W. Note that the set DDðxÞ
(x 2 Rl) is nonempty and is the solution of the following convex optimization problem

min
d2Rl ; kdk6D

hðFðxÞ þ DFðxÞdÞ; ð2:6Þ

which can be solved by well known methods such as the subgradient or cutting plane or bundle methods (see, e.g., [18]).
Many popular iterative methods such as trust region method, conjugate gradient method, steepest descent method, New-
ton-like methods, has been extended from a Banach space to a Riemannian manifold setting. Recently, Wang et al. [23]
extended the Gauss–Newton method (GNA) to Riemmannian manifold to solve the convex composite optimization on Rie-
mannian manifold M which is formulated as follows:

min
p2M

f ðpÞ :¼ hðFðpÞÞ; ð2:7Þ

where h is same as defined above and F is a differentiable mapping from M to Rl. As mentioned before, the study of (2.7)
naturally relates to the convex inclusion problem

FðpÞ 2 C; ð2:8Þ

where C ¼ argminh, the set of all minimum points of h. The extended Gauss–Newton method for convex composite optimi-
zation problem on Riemannian manifold (2.7) (GNAR) is defined as follows.
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