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a b s t r a c t

We study the maximum value of the difference between the metric dimension and the
determining number of a graph as a function of its order. We develop a technique that uses
functions related to locating-dominating sets to obtain lower and upper bounds on that
maximum, and exact computations when restricting to some specific families of graphs.
Our approach requires very diverse tools and connections with well-known objects in
graph theory; among them: a classical result in graph domination by Ore, a Ramsey-type
result by Erd}os and Szekeres, a polynomial time algorithm to compute distinguishing sets
and determining sets of twin-free graphs, k-dominating sets, and matchings.
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1. Introduction and preliminaries

Roughly speaking a resolving set is a subset of the vertices of a graph such that all other vertices are uniquely determined
by their distances to those vertices. This concept was introduced in the 1970s by Harary and Melter [21], and independently
by Slater [31]. Since one obtains a labeling process for all the vertices, resolving sets can be used to store the position of a
mobile object in a scenario modeled by a graph, and design effective algorithms to robot navigation. This is not the only area
where this type of sets can be used; we refer the reader to [6] and the survey of Bailey and Cameron [2] for more references
on applications to coin weighing problems, strategies for Mastermind game, and pattern recognition, among others.

Obviously, in order to design effective algorithms, resolving sets are required to have a cardinality as small as possible but
it is also important to consider the following property related to symmetries: the only automorphism of the graph fixing a
resolving set is the identity. In general, it is possible to find subsets of vertices with this property (of ‘‘destroying’’ all the
automorphisms) and with smaller cardinality than all the resolving sets in the graph; these are cases of determining sets,
which were introduced in the 1970s by Sims [30] in the context of computational group theory as specific types of bases.
Much later, Boutin [4] and Erwin and Harary [17] used respectively the terms determining set and fixing set to refer to
the same concept.

In order to analyze how different resolving sets and determining sets can be, Boutin in [4] asked the following question on
the parameters minimizing their cardinalities, which are formally defined below together with resolving sets and determin-
ing sets.

Problem 1. Can the difference between the determining number and the metric dimension of a graph be arbitrarily large?
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One of the main contributions of this paper is the technique that we have developed to approach this problem, which has
interest by its own, since it combines very diverse tools that go from a classical result by Ore and a Ramsey-type result of
Erd}os and Szekeres to matchings and the design of a polynomial time algorithm to compute sets with some specific prop-
erties. To be more precise, we first provide some definitions and notations.

Let G ¼ ðVðGÞ; EðGÞÞ be a finite, simple, undirected, and connected graph of order n ¼ jVðGÞj. As usual, G denotes the com-
plement of G. We write NGðuÞ and NG½u�, respectively, for the open and the closed neighbourhood of a vertex u 2 VðGÞ. The
degree of vertex u is denoted by dGðuÞ, and dðGÞ is the minimum degree of G. The subscript G will be dropped from these
notations when no confusion may arise.

An automorphism of G is a bijective mapping of VðGÞ onto itself such that f ðuÞf ðvÞ 2 EðGÞ if and only if uv 2 EðGÞ. The auto-
morphism group of G is denoted by AutðGÞ, and its identity element is idG. The stabilizer of a set S # VðGÞ is
StabðSÞ ¼ f/ 2 AutðGÞj/ðuÞ ¼ u;8u 2 Sg, and S is a determining set of G if StabðSÞ ¼ fidGg. The minimum cardinality of a deter-
mining set is the determining number of G, written as DetðGÞ.

The distance dðu;vÞ between two vertices u; v 2 VðGÞ is the length of a shortest u-v path. A vertex u 2 VðGÞ resolves a pair
fx; yg# VðGÞ if dðu; xÞ– dðu; yÞ. When every pair of vertices of G is resolved by some vertex in S, it is said that S is a resolving
set of G. The minimum cardinality of a resolving set is the metric dimension of G, denoted by dimðGÞ, and a resolving set of
cardinality dimðGÞ is called a metric basis of G.

Problem 1 arises naturally since, as it was said before, every resolving set of a graph G is also a determining set, and so
DetðGÞ 6 dimðGÞ (see [4,17]). Further, the difference between both parameters is either zero or very small in many families of
graphs; among them: paths, cycles, complete graphs, and 2-dimensional grids [17,27]. To approach the question we first
define the function ðdim� DetÞðnÞ as the maximum value of dimðGÞ � DetðGÞ over all graphs G of order n (note that its com-
putation would give the answer to the problem). Then, we develop a technique based mainly on the study of two functions
(which are introduced below) related to locating-dominating sets: ðk� DetÞðnÞ and kjC� ðnÞ. Besides its independent interest,
this technique lets us improve significantly the best result known to date on Problem 1 which, in terms of our function
ðdim� DetÞðnÞ, is the following.

Proposition 1.1 [5]. For every n P 8,

2
5

n
� �

� 2 6 ðdim� DetÞðnÞ 6 n� 2:

A vertex u 2 VðGÞ distinguishes a pair fx; yg# VðGÞ if either u 2 fx; yg or precisely one of x; y is adjacent to u, and a set
D # VðGÞ is a distinguishing set of G if every pair of vertices of G is distinguished by some vertex in D. When D is also a dom-
inating set (i.e., NðxÞ \ D – ; for every x 2 VðGÞ n D) it is said that D is a locating-dominating set. The minimum cardinality of a
locating-dominating set is the locating-domination number of G, denoted by kðGÞ. Note that kðGÞ 6 n� 1 since every subset of
n� 1 vertices is a locating-dominating set of G.

Although distinguishing sets and locating-dominating sets were introduced in different contexts (see [1,32]) they are in
essence the same concept: given a distinguishing set D # VðGÞ, by definition there is at most one vertex x 2 VðGÞ n D so that
NðxÞ \ D ¼ ;. Thus D [ fxg is a locating-dominating set. This yields the following.

Observation 1.2. Let D be a distinguishing set of a graph G. Then, kðGÞ 6 jDj þ 1.
Every locating-dominating set D # VðGÞ is clearly a resolving set since each pair fx; yg# VðGÞ n D is distinguished by some

vertex u 2 D and so either dðu; xÞ ¼ 1 < dðu; yÞ or dðu; yÞ ¼ 1 < dðu; xÞ. Thus, DetðGÞ 6 dimðGÞ 6 kðGÞ for every graph G.
Let ðk� DetÞðnÞ and kðnÞ be the maximum values of, respectively, kðGÞ � DetðGÞ and kðGÞ over all graphs G of order n. Note

that the function kðnÞ equals n� 1 (attained by the complete graph Kn) but the non-trivial restriction of this function to the
class C� of twin-free graphs (i.e., graphs that do not contain twin vertices, which are formally defined in SubSection 3.1),
denoted by kjC� ðnÞ, will play an important role throughout the paper. Thus,

ðdim� DetÞðnÞ 6 ðk� DetÞðnÞ 6 kðnÞ ¼ n� 1: ð1Þ

In Section 2, we find lower bounds on the functions ðdim� DetÞðnÞ and ðk� DetÞðnÞ by constructing appropriate families
of graphs. In particular, we improve the lower bound of Proposition 1.1 and conjecture that these new bounds are precisely
the exact expressions of those functions.

Section 3 develops a method to prove that kjC� ðnÞ is an upper bound on ðdim� DetÞðnÞ and ðk� DetÞðnÞ, which is a key
result in our study. Moreover, we conjecture a formula for the function kjC� ðnÞ.

Sections 4 and 5 contain two explicit upper bounds on kjC� ðnÞ. Although the one in Section 5 gives a better
approach, we believe that the technique used to obtain the bound in Section 4 has interest by its own and so it is
worth to be included in this paper. This technique uses a variant of a classical theorem in domination theory due
to Ore [28], which lets us relate, for twin-free graphs, the locating-domination number with a series of classical graph
parameters (following the same spirit as the relationships existing among different domination parameters; see [23] for
a number of examples). The desired bound is then obtained by using those relations and a Ramsey-type result of Erd}os
and Szekeres [16].
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