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a b s t r a c t

This paper is devoted to studying a predator–prey model with Holling type-II functional
response and cross-diffusion subject to Neumann boundary condition. Our main interest
lies in the effects of cross-diffusion on stability and stationary patterns. More precisely,
the presented results show that cross-diffusion can not only destabilize a uniform equilib-
rium which is stable for the kinetic and random diffusion reaction systems, but also create
spatial patterns even when the random diffusion fails to do so. Furthermore, our results
also reveal that, in this kind of ecological system, instability and stationary patterns can
appear only when the predators rapidly move away from a large group of preys, regardless
of the speed that the preys keep away from the predators.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In population dynamics, the spatially homogeneous predator–prey system with Holling type-II functional response has
been extensively studied in the existing literature, see for example [1–5]. This model takes the following form:

dU
d�t ¼ bU 1� U

K

� �
� EMUV

AþU ;

dV
d�t ¼ V MU

AþU � D
� �

;

8<: ð1:1Þ

where U and V represent the densities of the prey and the predator, respectively; b;A;D; E;K;M are positive constants. b;K
and E represent the intrinsic growth rate, the carrying capacity and the relative loss of the prey, respectively; D is the death
rate of the predator; the function MU

AþU is the Holling type-II functional response of the predator.
For simplicity, applying the following scaling to (1.1)

t ¼ b�t; u ¼ U; v ¼ EM
b

V ;

then system (1.1) becomes
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du
dt ¼ u 1� u

k

� �
� uv

aþu ;

dv
dt ¼ v bu

aþu� c
� �

;

8<: ð1:2Þ

where a ¼ A; k ¼ K; b ¼ M
b ; c ¼ D

b. Moreover, if b > cðkþaÞ
k , then the unique positive equilibrium u� ¼ ðu�; v�ÞT of (1.2) is given by

u� ¼ ac
b� c

; v� ¼ ðaþ u�Þðk� u�Þ
k

:

When the densities of the prey and predator are spatially inhomogeneous in a bounded domain with smooth boundary
X � RNðN P 1Þ, instead of the ordinary differential system (1.2), one gets the following reaction–diffusion system

ut � d1Du ¼ u 1� u
k

� �
� uv

aþu ; in X� ð0;1Þ;

v t � d2Dv ¼ v bu
aþu� c
� �

; in X� ð0;1Þ;
@u
@m ¼ @v

@m ¼ 0; on @X� ð0;1Þ;
uðx;0Þ ¼ u0ðxÞ; vðx;0Þ ¼ v0ðxÞ; on X:

8>>>>><>>>>>:
ð1:3Þ

Here, a; b; c; k are positive constants, m is the outward unit normal vector on @X. The positive constants d1 and d2 are called
random diffusion coefficients, which represent the natural dispersive force of movement of the prey and predator, respec-
tively. The homogeneous Neumann boundary condition means that the two species have zero flux across the boundary
@X. The admissible initial data u0ðxÞ and v0ðxÞ are nonnegative smooth functions which are not identically zero. For system
(1.3), the properties of solutions such as stability, bifurcation and spatiotemporal patterns have been well researched (see
e.g. [6–9]). We also mention that for (1.3) with Dirichlet boundary condition, many mathematical results have been obtained
and we refer to [10–12] and references therein.

In the present paper, we shall introduce the random diffusion and cross-diffusion to (1.2) and study the following strongly
coupled reaction–diffusion system

ut � Dðd1uþ q12uvÞ ¼ u 1� u
k

� �
� uv

aþu ; in X� ð0;1Þ;

v t � Dðd2v þ q21uvÞ ¼ v bu
aþu� c
� �

; in X� ð0;1Þ;
@u
@m ¼ @v

@m ¼ 0; on @X� ð0;1Þ;
uðx;0Þ ¼ u0ðxÞ;vðx; 0Þ ¼ v0ðxÞ; on X

8>>>>><>>>>>:
ð1:4Þ

and the associated steady state problem which satisfies

�Dðd1uþ q12uvÞ ¼ u 1� u
k

� �
� uv

aþu ; in X;

�Dðd2v þ q21uvÞ ¼ v bu
aþu� c
� �

; in X;

@u
@m ¼ @v

@m ¼ 0; on @X;

8>><>>: ð1:5Þ

where the diffusion term is D/ðuÞ,

u ¼
u

v

� �
; /ðuÞ ¼

d1uþ q12uv
d2v þ q21uv

� �
: ð1:6Þ

The non-negative constants q12 and q21 are usually referred as cross-diffusion pressures, q12 represents the tendency that
the prey keeps away from the predator. In a certain kind of predator–prey relationships, a large number of prey species form
a huge group to protect themselves from the attack of predator. Thus q21 means the tendency of predators to move away
from a large group of preys, see [13,14] for more ecological background with respect to cross diffusion.

In Turing’s seminal paper [15], diffusion has been regarded as the driving force of the spontaneous emergence of spatio-
temporal structure in a variety of non-equilibrium situations. There have been many works on the role of random diffusion
(see e.g. [7,16–25]). Following Turing’s idea, Shi et al. [26] further explored Turing’s diffusion induced instability for the
cross-diffusion systems. They showed that cross-diffusion can destabilize a uniform equilibrium which is stable for the
kinetic and random diffusion reaction systems; on the other hand, cross-diffusion can also stabilize a uniform equilibrium
which is stable for the kinetic system but unstable for the random diffusion reaction system.

Recently, Xie [27] studied system (1.4) but with diffusion term DWðuÞ, where WðuÞ :¼ ðd1uð1þ d3vÞ; d2vð1þ d4
1þuÞÞ

T
; d3 > 0

and d4 > 0 represent cross-diffusion pressures which imply that the prey runs away from predator and the predator chases
the prey (see e.g. [14,28]). The author showed that if the positive equilibrium solution u� is linearly stable with respect to the
ODE system (1.2), then it is also linearly stable for (1.4) with the diffusion term DWðuÞ. That is to say, random diffusion and
cross-diffusion can not drive instability (see [27, Theorem 1.1]). In [29], Feng and Wang investigated the associated steady
state problem of (1.4) with the same diffusion term DWðuÞ. They derived the existence of non-constant positive steady state
when the positive equilibrium for the ODE system (1.2) is linearly unstable (see [[29]Theorem 6]). In [30], Liu and Lin con-
sidered a predator–prey model with Holling type III response function and cross-diffusion. In [31], Zhou and Kim investi-
gated a Lotka–Volterra prey-predator model with cross-diffusion and Holling type-II functional response subject to
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