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a b s t r a c t

We calculate accurate critical parameters for a class of non-hermitian Hamiltonians by
means of the diagonalization method. We study three one-dimensional models and two per-
turbed rigid rotors with PT symmetry. One of the latter models illustrates the necessity of a
more general condition for the appearance of real eigenvalues that we also discuss here.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

There has recently been interest in PT-symmetric Hamiltonians that exhibit real eigenvalues for a range of values of a
potential parameter. Some of them are anharmonic oscillators [1–9] as well as models with Dirichlet [10–12] periodic
and anti-periodic boundary conditions [13,14].

Among the methods used for the study of such models we mention the WKB approximation [3,4], the eigenvalue moment
method [5,7], the multiscale reference function analysis [6], the diagonalization method (DM) [8] and the orthogonal poly-
nomial projection quantization (OPPQ) (an improved Hill-determinant method) [9].

For some particular values of the potential parameter the spectrum of those PT-symmetric Hamiltonians exhibits critical
points where two real eigenvalues coalesce and emerge as complex conjugate eigenvalues. Such critical points are also
known as exceptional points [15–18].

The purpose of this paper is the analysis of the critical points for a variety of simple models. The calculation is based on a
well known simple and quite efficient application of the DM [15]. In Section 2 we propose a somewhat more general con-
dition for the existence of real eigenvalues (unbroken symmetry) [19,20] that is suitable for models with degenerate states.
In Section 3 we present three one-dimensional examples already discussed earlier by other authors. In Section 4 we outline
the procedure for the calculation of critical points based on the DM. In Section 5 we apply perturbation theory to one of the
models and discuss the convergence of the perturbation series for the eigenvalues by comparison with the accurate results
produced by the DM. In Section 6 we discuss a PT-symmetric perturbed planar rigid rotor that was studied earlier as an
example with E2 algebra [14]. In Section 7 we discuss a non-hermitian perturbed three-dimensional rigid rotor that was
not treated before as far as we know. This most interesting model illustrates the generalized condition for real eigenvalues
mentioned above. Finally, in Section 8 we summarize the main results and draw conclusions.

2. PT Symmetry

It is well known that a wide class of non-hermitian Hamiltonians with unbroken PT symmetry exhibit real spectra
[19,20]. In general, they are invariant under an antilinear or antiunitary transformation of the form bA�1 bHbA ¼ bH. The antiu-
nitary operator bA satisfies [21]
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bA fj i þ gj ið Þ ¼ bA fj i þ bA gj i;bAc fj i ¼ c�bA fj i ð1Þ

for any pair of vectors fj i and gj i and arbitrary complex number c, where the asterisk denotes complex conjugation. This def-
inition is equivalent tobAf

D bAg
��� E

¼ fh gj i�: ð2Þ

It follows from the antiunitary invariance mentioned above that ½bH; bA� ¼ 0. Therefore, if wj i is an eigenvector of bH with eigen-
value EbH wj i ¼ E wj i; ð3Þ

we have

½bH; bA� wj i ¼ bHbA wj i � bA bH wj i ¼ bHbA wj i � E�bA wj i ¼ 0: ð4Þ

This equation merely tell us that if wj i is eigenvector of bH with eigenvalue E then bA wj i is eigenvector with eigenvalue E�.
Consequently, E is real ifbHbA wj i ¼ EbA wj i; ð5Þ

that contains the condition of unbroken symmetry required by Bender et al. [19,20]bA wj i ¼ k wj i; ð6Þ

as a particular case. Note that Eq. (5) applies to the case in which bA wj i is a linear combination of degenerate eigenvectors of bH
with eigenvalue E.

If bK is an antilinear operator such that bK 2 ¼ 1̂ (for example, the complex conjugation operator) then it follows from (2)
that bAbK ¼ bU is unitary (bU y ¼ bU�1). In other words, any antilinear operator bA can be written as a product of a unitary operator
and the complex conjugation operation [21]. In most of the non-hermitian models studied bU�1 ¼ bU that results in bA2 ¼ 1̂ (as
in the case of the parity operator bU ¼ bP that gives rise to PT symmetry) [19,20].

3. Some simple one-dimensional examples

In this section we consider three examples of the Schrödinger equationbHw ¼ Ew;bH ¼ p̂2 þ bV ðxÞ; ð7Þ

with eigenvalues E0 < E1 < � � �.
The first one [3,5,6]bH ¼ p̂2 þ ix̂3 þ iax̂ ð8Þ

exhibits an infinite set of critical values 0 > a0 > a1 > � � � > an > � � � of a so that E2n ¼ E2nþ1 at a ¼ an. Both eigenvalues are real
when a > an and become complex conjugate numbers when a < an. The eigenfunctions w2n and w2nþ1 are linearly dependent
at the exceptional point a ¼ an [15–18].

The second example is [1,4,7]bH ¼ p̂2 þ x̂4 þ iax̂: ð9Þ

If bP denotes the parity operator we have bP bHðaÞbP ¼ bHð�aÞ so that Eð�aÞ ¼ EðaÞ. Because of this property of the eigenvalues
the crossings E2n ¼ E2nþ1 take place at �an, where 0 < a0 < a1 < � � � < an < � � �. In this case the pair of coalescing eigenvalues
become complex conjugate numbers when jaj > an.

The third example is given bybH ¼ p̂2 þ iax̂; ð10Þ

with the boundary conditions wð�1Þ ¼ 0. In this case we also find that the crossings take place at �an; an > 0 as in the pre-
ceding one. Because of physical reasons Rubinstein et al. [10] considered only the half line a > 0.

4. Diagonalization method

In order to solve the Schrödinger equation (7) we resort to a matrix representation of the Hamiltonian operator
Hij ¼ ih jbH jj i in an appropriate orthonormal basis set f jj i; j ¼ 0;1; . . .g . We obtain the eigenvalues from the roots of the

142 F.M Fernández, J. Garcia / Applied Mathematics and Computation 247 (2014) 141–151



Download English Version:

https://daneshyari.com/en/article/6420872

Download Persian Version:

https://daneshyari.com/article/6420872

Daneshyari.com

https://daneshyari.com/en/article/6420872
https://daneshyari.com/article/6420872
https://daneshyari.com

