
Discretization of fractional order differentiator over
Paley–Wiener space

Yan Wu
Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460, USA

a r t i c l e i n f o

Keywords:
Bandlimited functions
Extrapolation
Fractional order differentiator
Grünwald–Letnikov approximation
Interpolation
Paley–Wiener space

a b s t r a c t

The Paley–Wiener space consists of functions whose Fourier transform is compactly sup-
ported in the frequency domain. In the context of signal processing, such functions are also
known as bandlimited signals, which represent a large class of signals in signal processing.
An analog fractional order differentiator is representable by way of the Cauchy integral
formula, special functions, as well as the Fourier/Laplace transformer, while a digital differ-
entiator of fractional order can be obtained through direct or indirect discretization tech-
niques. In this paper, we present the design of a finite impulse response (FIR) filter that
discretizes the fractional order differentiator over functions in Paley–Wiener space. The
proposed FIR model has some meritorious properties that are preferred in applications:
the filter coefficients are independent of the signal samples; it is capable of interpolating
or extrapolating at an arbitrary point in the sampling domain; it is adaptive to uniform or
non-uniform sampling scenarios. We present explicit formulas on the matrices that lead
to computing the filter coefficients. A closed form formula on the error of approximation
is derived to demonstrate the accuracy of the proposed discretization model of fractional
derivatives. Numerical results also show that the proposed method is more computationally
efficient than the well-known methods such as the Grünwald–Letnikov approximation.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The concept of fractional order differentiation and integration came into being at the same time as the conventional
integral order calculus. The early development of fractional calculus is associated with the names such as Euler, Riemann,
Leibniz, Lagrange, Fourier, Laplace, and so on. A thorough historical review of fractional calculus can be found in [1]. Frac-
tional order differentiation or a fractional derivative is considered a generalization of an integral order derivative, however,
with its own characteristics. Only in recent years have fractional derivatives become important mathematical tools in
modeling various physical phenomena. Some also believe that fractional order differential equations are more effective in
modeling nonlinearity. Podlubny gave celebrated geometrical and physical interpretation of fractional derivative in [2].
Meanwhile, the applications of the fractional derivative are readily seen in areas such as thermodynamics, electromagnetic
field, quantum mechanics [3–5], signal processing, and control [6,7], and cardiac electrophysiology [8], to name a few.

In this paper, we are concerned with constructing a discrete analog of a fractional order differentiator over Paley–Wiener
space, which consists of functions with compact support in the frequency domain. These types of functions are also known as
bandlimited signals, representing an important class of signals in signal processing. In practice, all signals can be filtered into
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bandlimited signals, either low-passed or band-passed, based on the appropriate filters. Tseng, Pei and Hsia introduced their
design of a digital FIR differentiator in [6] based on Cauchy integral formula and Fourier transform to discretize the fractional
derivative kernel in the Fourier frequency domain. Their digital fractional differentiator (DFD) is capable of estimating the
fractional derivative at the current sampling point (uniform sampling). The performance of their DFD is demonstrated with
numerical experiments. The DFD proposed in this paper has the following novel and meritorious features: (i) it is capable of
interpolating and extrapolating fractional derivatives at an arbitrary point in the sampling domain; (ii) it is adaptive to uni-
form or non-uniform sampling; (iii) it comprises the discretization of an integral order differentiator as a special case. We
present a closed form bound on the error of approximation to prove the accuracy of the proposed model.

The rest of this paper is organized as follows. In Section 2, we give necessary background on fractional derivatives along
with a list of formulas that motivate the proposed design, the fractional order differentiator and underlying function space.
The main results are reported in Section 3, including derivations, analysis, and numerical tests, followed by conclusive
remarks and potential applications of the proposed DFD.

2. Definitions

Unlike general integral order derivatives, dnf=dxn, where one can obtain higher order derivatives by repeating the process
of first-order differentiation, the fractional order derivative, denoted by, Da, where a 2 Rþ, is defined through a fractional
integral,

D�af ðtÞ ¼ 1
CðaÞ

Z t

a
ðt � sÞa�1f ðsÞds

known as a Riemann–Liouville fractional integral. As such a fractional derivative is obtained as

Daf ðtÞ ¼ dn

dtn D�ðn�aÞf ðtÞ ð1Þ

where n ¼ ad e. The more popular Caputo fractional derivative [9] is particularly useful for solving fractional differential
equations,

Daf ðtÞ ¼ 1
Cðn� aÞ

Z t

a

f ðnÞðsÞ
ðt � sÞaþ1�n ds; ðn� 1 6 a < nÞ: ð2Þ

There are a few other alternative formulas for fractional order derivatives. The most relevant formula to this paper is the
Grünwald–Letnikov derivative

Daf ðtÞ ¼ lim
h!0

h�a Xðt�aÞ=hb c

j¼0

ð�1Þj
a
j

� �
f ðt � jhÞ:

Suppose we only approximate the derivative at the mesh points, tj ¼ t0 þ jh; j ¼ 0;1; . . . ;N, the Grünwald–Letnikov
approximation formula can be written as [10]

Daf ðtNÞ _¼h�aXN

j¼0

xðaÞj f ðtN�jÞ ð3Þ

where xðaÞ0 ¼ 1; xðaÞj ¼ ð1� ðaþ 1Þ=kÞxðaÞj�1; j ¼ 1;2;3; . . . N. Eq. (3) is clearly a finite difference approximation of the frac-

tional derivative of order a. There are higher-order finite difference methods for numerical differentiation of integral-order
derivatives, such as the ones derived from Taylor series and those based on Richardson extrapolation. Consequently, those
difference formulas are generalized to approximate fractional derivatives [10–12]. Lubich also developed higher order
method by way of the numerical quadrature of fractional order in [13]. Moreover, in the same paper, he also laid groundwork
in the convergence and stability analysis of numerical methods for discretized fractional calculus.

The proposed algorithm in this paper for a discrete fractional differentiator is motivated by (3). We observe from (3) that a
fractional derivative is a process with memory. The derivative depends on the function’s historical values. Unlike the inte-
gral-order derivatives, where only local function values are needed, in the case of a fractional derivative, it depends on func-
tion values over the whole domain and so is a nonlocal operator. This is also observed from the integral definitions of
fractional derivatives in (1) and (2).

There are a number of known formulas, see [1], in addition to the above mentioned ones, for computing fractional order
derivatives, none of which would readily produce closed form, explicit expressions for the derivative, except for some rather
basic functions. This is due to the complexity of the definitions of fractional derivatives, and most of the differentiation rules
for ordinary derivative cannot be carried over to the fractional derivative. Therefore, there is a need for developing compu-
tational methods that are capable of approximating fractional derivatives numerically with high accuracy, whilst the method
itself has a simple structure for implementation. The model proposed in this paper meets this criterion since it is formulated
in the form of a convolution between a set of optimal coefficients and a set of functional samples, and it is capable of
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