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a b s t r a c t

This paper is concerned with a logistic equation with spatio-temporal delay. The local
asymptotic behavior of positive constant steady-state solution of the equation is consid-
ered. In particular, by using the iterative technique, sufficient conditions are established
for the existence of traveling wave front solution connecting the zero and the positive
constant steady-state solution. Finally, numerical simulations supporting the theoretical
analysis are also included.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, many mathematical models, involving reaction–diffusion equations with spatially and temporally non-
local terms in the form of the convolution of a kernel with the dependable variable, have attracted much attention in pop-
ulation biology since they are believed to be more realistic than the usual kind of reaction–diffusion models for certain
population dynamics. For more biological background and derivations of such models, see [1–4,6,7,5,8–10].

In this paper, we consider the following diffusive logistic equation with spatio-temporal delay

@uðx; tÞ
@t

¼ Muðx; tÞ þ uðx; tÞ 1� ðG � uÞðx; tÞ½ �; x 2 X; t > 0; ð1:1Þ

where uðx; tÞ is the population density at location x and time t. The convolution G � u is defined by

ðG � uÞðx; tÞ ¼
Z t

�1

Z
X

f ðx; y; t � sÞkðt � sÞuðy; sÞdyds:

The nonlocal growth rate per capita in (1.1) incorporates the possible dispersal of the individuals during the maturation
period, hence it is a more realistic model. We assume that it takes the form of the so-called weak kernel [11] as follows
kðsÞ ¼ 1

s e�s
s; s > 0, where s is the average delay. f is a weighting function describing the distribution at past time of the indi-

viduals of the species u who is in position x at time t. For more details on the choice of kernel functions and the background of
spatial–temporal delay, see [1–5,8].
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It is well-known that the prototypical delayed reaction–diffusion equation is the diffusive logistic equation following the
pioneering work of Hutchinson [12]

@uðx; tÞ
@t

¼ Muðx; tÞ þ uðx; tÞ½1� uðx; t � sÞ�: ð1:2Þ

For a long time, it has been recognized that delays not only can cause the loss of stability but also induce various oscillations
and periodic solutions, see [13–16]. For example, for the Neumann boundary value problem, (1.2) has been considered in
[17,18] and they considered the stability and related Hopf bifurcation from the homogeneous equilibrium. Busenberg and
Huang [19] studied the Hopf bifurcation of (1.2) and Dirichlet boundary condition proposed by Green and Stech [20]. For
more the conclusions of (1.2), see [22,21]. They showed that the unique spatially positive steady-state solution loses the sta-
bility for a large delay and a Hopf bifurcation occurs so that the system exhibits oscillatory pattern. However, the local
asymptotic stability of the positive constant steady-state solution of (1.1) is found in this work. In addition, the traveling
wave solutions for an equation in form of (1.2) have been considered in many papers [2,3,24–26,23]. In this paper, by using
an iterative technique recently developed by Wang, Li and Ruan [8], sufficient conditions are established for the existence of
traveling wave front solution connecting the zero and the positive equilibria in reaction–diffusion equation with spatio-tem-
poral delay (1.1).

The rest of this paper is organized as follows. In Section 2, the local asymptotic behavior of positive constant steady-state
solution of (1.1) is considered. In Section 3, the existence of traveling wave front is demonstrated. Finally, numerical simu-
lations supporting the theoretical analysis are also included.

2. Local stability

In this section, we focus on the local asymptotic behavior of positive constant steady-state solution of (1.1). We consider
Eq. (1.1) with the following boundary value conditions

@u
@m
¼ @v
@m
¼ 0 on @X ð2:1Þ

and initial value conditions

uðx; hÞ ¼ /ðx; hÞ > 0; x 2 X; h 2 ð�1;0�

and
R1

0 kðsÞds ¼ 1.

f ðx; y; tÞ ¼ 1
p
þ 2

p
X1
n¼1

e�n2t cos nx sin ny

is a fundamental solution of the heat equation

@f
@t ¼

@2f
@y2 ; y 2 X; t > 0;

@f
@y ¼ 0; y 2 @X; t > 0;

f ðx; y;0Þ ¼ dðx� yÞ;

8>><
>>: ð2:2Þ

where X is a bounded domain with smooth boundary @X; m is the unit outward normal vector on the boundary of X and the
Neumann boundary conditions imply that the species have zero flux across the domain boundary @X.

Let vðx; tÞ ¼
R t
�1
R

X f ðx; y; t � sÞkðt � sÞuðy; sÞdyds, then (1.1) can be rewritten as the following system

@uðx; tÞ
@t

¼ Muðx; tÞ þ uðx; tÞ½1� vðx; tÞ�; x 2 X; t > 0;

@vðx; tÞ
@t

¼ Mvðx; tÞ þ 1
s
½uðx; tÞ � vðx; tÞ�; x 2 X; t > 0;

@uðx; tÞ
@m

¼ 0;
@vðx; tÞ
@m

¼ 0; x 2 @X; t > 0;

uðx; hÞ ¼ /ðx; hÞ > 0; vðx; hÞ ¼ wðx; hÞ > 0; x 2 X; h 2 ð�1;0�:

ð2:3Þ

It is well known that the linear operator D on X with homogeneous Neumann boundary conditions has the eigenvalues
�liðli P 0; i ¼ 0;1;2 � � �Þ. The characteristic equation for the linearized system (2.3) on positive steady-state solution u� ¼ 1
is

k2 þ 2li þ
1
s

� �
kþ l2

i þ
1
s
li þ

1
s
¼ 0: ð2:4Þ

It is obvious that Eq. (2.4) has no zero roots since 2li þ 1
s > 0;l2

i þ 1
s li þ 1

s > 0. Consequently, all roots of Eqs. (2.4) have neg-
ative real parts. Therefore, we have the following result:
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