
Subgradient algorithms for solving variable inequalities q

J.Y. Bello Cruz a,⇑, G. Bouza Allende b, L.R. Lucambio Pérez a

a Instituto de Matemática e Estatística, Universidade Federal de Goiás, CEP 74001-970 GO Goiânia, Brazil
b Departamento de Matemática Aplicada, Facultad de Matemática y Computación, Universidad de La Habana, CEP 10400 Habana, Cuba

a r t i c l e i n f o

Keywords:
Convexity
Projection methods
Subgradient methods
Variable ordering

a b s t r a c t

In this paper we consider the variable inequalities problem, that is, to find a solution of the
inclusion given by the sum of a function and a point-to-cone application. This problem can
be seen as a generalization of the classical inequalities problem taking a variable order
structure. Exploiting this relation, we propose two variants of the subgradient algorithm
for solving the variable inequalities model. The convergence analysis is given under
convex-like conditions, which, when the point-to-cone application is constant, contains
the old subgradient schemes.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider the inclusion problem of finding x 2 C such that

0 2 TðxÞ; ð1Þ

where T : Rn
� Rm is a point-to-set operator and C is a nonempty and closed subset of Rn. Inclusions has been studied in

many works due its applications; see, for instance, [30,14,28]. However, we will focus in the case in which
TðxÞ ¼ FðxÞ þ KðFðxÞÞ, where F : Rn ! Rm and K : Rm

� Rm is a point-to-set application such that KðyÞ is a closed pointed
convex cone for all y 2 Rm. Then, we are lead to the model:

find a point x 2 C fulfilling that 0 2 FðxÞ þ KðFðxÞÞ: ð2Þ

If K is a constant application, problem (2) is equivalent to compute x 2 C such that

0 2 FðxÞ þ K: ð3Þ

This model is known as the K-inequalities problem because, using the partial order defined in Rm by K as

ŷ �K y if and only if y� ŷ 2 K;

problem (3) is equivalent to:

find x 2 C such that FðxÞ�K 0: ð4Þ

Model (2) can be interpreted as a system of variable inequalities. Indeed, consider the variable order given by
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z �KðzÞ y if and only if y� z 2 KðzÞ;

see [17,16] for more details. Then, problem (2) is equivalent to:

find x 2 C such that FðxÞ�KðFðxÞÞ0: ð5Þ

That is why, from now on, this problem will be called the variable inequalities problem. The solution set of this problem will
be denoted by S�.

Note that if K is a constant application, problem (5) leads to model (4), which has been already studied in [26,27,10,11].
Moreover, if K is the Pareto cone, i.e., K ¼ Rm

þ , it is equivalent to the convex feasibility problem, which has been well-studied
in [4] and has many applications in optimization theory, approximation theory, image reconstruction and so on; see, for
instance, [25,31,13]. The variable case is not only a generalization of problem (4). Variable order optimization models appear
in portfolio and medicine applications, as recently reported in [2,3,16].

The algorithms for solving problem (4) mainly converge under convexity of F. We generalize this concept to the variable
order case as follows

aFðxÞ þ ð1� aÞFðx̂Þ � Fðaxþ ð1� aÞx̂Þ 2 KðFðaxþ ð1� aÞx̂ÞÞ: ð6Þ

We want to point out that relation (6) generalizes the previously defined convexity concept to the case in which the
point-to-cone application, K, is identically constant. As in this case, if F is a K-convex function and C is a convex set, model
(5) is also called a K-convex inequalities problem.

In this paper we propose a subgradient approach for solving problem (5), which combines a subgradient iteration with a
simple projection step, onto the intersection of C with suitable halfspaces containing the solution set S�. The proposed con-
ceptual algorithm has two variants called Algorithms R and S. The first one is based on Robinson’s subgradient algorithm
given in [27] for solving problem (4). The S variant corresponds to a special modification of the subgradient algorithms pro-
posed in [9] for the scalar problem (m ¼ 1 and K ¼ Rþ) and in [10] for solving problem (4). The main difference between the
proposed variants lies in how the projection step is done. For the convergence of the variants, we assume that the set S� is
nonempty and that the function F is K-convex with respect to the defined variable order extending the previous schemes.

The paper is organized as follows. In the next section, we outline the main definitions and preliminary results. In Sec-
tion 3 some analytical results and comparisons for K-convex functions are established. Section 4 is devoted to the presen-
tation of the algorithms and their convergence is shown in Section 5. Finally, some comments and remarks are presented in
Section 6.

2. Preliminaries

In this section, we present some definitions and results, which are needed in the convergence analysis. We begin with
some classical notations.

The inner product in Rn is denoted by h�; �i, the norm, induced by this inner product, by k � k and B½x;q� is the closed ball
centered at x 2 Rn with radio q, i.e., B½x;q� :¼ fy 2 Rn : ky� xk 6 qg. A set valued application K : Rm

� Rm is closed if and only
if grðKÞ :¼ fðx; yÞ 2 Rm � Rm : y 2 KðxÞg is a closed set. Given the cone K, the dual cone of K, denoted K�, is
K� :¼ z 2 Rm : hz; yiP 0; 8y 2 Kf g.

The set C will be a closed and convex subset of Rn. For an element x 2 Rn, we define the orthogonal projection of x onto
C; PCðxÞ, as the unique point in C, such that kPCðxÞ � yk 6 kx� yk for all y 2 C. In the following we consider a well known fact
on orthogonal projections.

Proposition 2.1. Let C be a nonempty, closed and convex set in Rn. For all x 2 Rn and all z 2 C, the following property holds:
hx� PCðxÞ; z� PCðxÞi � 0.

Proof. See Theorem 3.14 of [5]. h

Next we deal with the so-called Fejér convergence and its properties.

Definition 2.1. Let S be a nonempty subset of Rn. A sequence ðxkÞk2N is said to be Fejér convergent to S, if and only if for all
x 2 S, there exists �k > 0 such that kxkþ1 � xk 6 kxk � xk for all k P �k.

This definition was introduced in [12] and has been further elaborated in [20]. An useful result on Fejér sequences is the
following.

Theorem 2.2. If ðxkÞk2N is Fejér convergent to S then,

(i) The sequence ðxkÞk2N is bounded,
(ii) if a cluster point of the sequence ðxkÞk2N belongs to S, then the sequence ðxkÞk2N converges to a point in S.

Proof. See Theorem 2.16 of [4]. h
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