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a b s t r a c t

This paper presents a new approach to the modeling of boundary conditions for first order
models of vehicular traffic in highways. The first step consists in deriving a model for the
dynamics of the flow of vehicles. Simulations of the parameters lead to a detailed analysis
of the qualitative properties of the model. Subsequently, for such model, the statement of
initial-boundary value problems is deduced, with domain decomposition, for a tract of
highway between tollgates.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The modeling of vehicular traffic, as known [13,2], can be developed at different representation scales, namely the micro-
scale, where the dynamic of all driver-vehicle subsystems is individually considered, and the macro-scale, suitable to provide
the time and space evolution of the macroscopic flow quantities, typically local density and mean velocity. An intermediate
link between these two scales is offered by the kinetic theory approach, where the dependent variable is a probability dis-
tribution over the micro-scale state of the interacting vehicles. The critical analysis proposed in [2] shows that none of the
aforesaid scale is fully satisfactory in capturing the complexity of the system under consideration. Possibly multiscale ap-
proaches need to be developed.

More in details, models at the macro-scale are not fully consistent with the physics of the granular, intermittent, flow of
vehicles. However, they can offer models with a simple structure useful for the applications. First order models [7,1] simply
consist in the mass conservation equation properly closed by a phenomenological model referring the local mean velocity to
the local density conditions, including, in some general cases, density gradients; nonlocal effects may also be considered
[14]. The book by Kerner [16] illustrates how empirical data can be properly collected and interpreted with the attempt
of breaking the complexity of the system under consideration. As an example, in some recent papers [18–21] car-following
models considering the relationship between micro and macro variables and taking into consideration proper anticipation
effects are considered.

The formal structure of first order models is as follows:

@tqþ @xðqB½q�Þ ¼ 0; with v ¼ B½q�; ð1:1Þ

where B, which approximate the mean local velocity, is an operator to be properly determined according to models suitable
to take into account the dynamics at the micro-scale, and the square brackets are used to denote that B is a functional of q; in
simple cases, such as those treated in the following, it is a function of q and its space derivative.
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Moreover, each vehicle is modeled as a point, i.e. its length is negligible with respect to the length of the road, although a
maximal density nM corresponding to bumper-to-bumper packing situation is considered; q ¼ n=nM , is the dimensionless
number density of vehicles, where the number density of vehicles n is referred to the maximal density nM; v ¼ V=VL, is
the mean velocity referred to the limit velocity VL, namely the maximal velocity that a vehicle can technically reach in a cer-
tain road. This quantity is related to VM (maximal mean velocity of vehicles in free flow conditions) by the relation
VL ¼ ð1þ lÞVM where l is a positive constant valid in all environments (0 < l < 1). These quantities depend on time and
space, namely q ¼ qðt; xÞ and v ¼ vðt; xÞ, where t is a dimensionless time being referred to ‘=VM , being ‘ the length of the
road and x the dimensionless space being referred to ‘. Finally, local dimensionless flow is obtained by the relation
qðt; xÞ ¼ qðt; xÞvðt; xÞ.

These models can be implemented for applications with special attention to networks [6,15,8], where the computational
simplicity of first order models is a basic requirement to deal with the complexity of large systems. However, the modeling
approach should take into account the following:

1. The closure v ¼ B½q� should be related to the dynamics at the lower scale and to the quality of the road-environment
conditions;

2. The application of the model is effective if suitable boundary conditions can be implemented corresponding to real traffic
conditions such as tollgates, junctions, and traffic highlights.

The mathematical model proposed in [11] is specifically focused on the first issue to derive a model for the time–space
dynamics of the density. The derivation includes a phenomenological model referring the local mean velocity to the local
density and density gradient. However it is useful looking ahead to applications and to the validation of models based on
empirical data. Accordingly, this paper derives from [11] a model for the flow and focuses on the implementation of bound-
ary conditions corresponding to the presence of tollgates. The approach can be technically generalized to junctions and other
devices of networks.

More precisely, Section 2 deals with the derivation from Eq. (1.1) of a model, where the flow, rather than the density, is
the dependent variable. Section 3 presents the implementation of boundary conditions by a detailed analysis of the modi-
fication of the flow dynamics due to the presence of tollgates. Finally, Section 4 proposes a critical analysis towards further
developments.

2. Derivation and qualitative properties of a model for the flow

As already mentioned in Section 1, it is convenient replacing the equation for the density by an equivalent model for the
flow q ¼ qðt; xÞ. In fact, this is a quantity of greater interest for the interpretation of the flow conditions due to the fact that
empirical data for the flow are more accurate than those for the density. Moreover, the implementation of boundary condi-
tions can be viewed, as we shall see, as an external action to control the flow of vehicles at tollgates rather than to control the
density.

Let us briefly summarize the mathematical model proposed in [11] focusing on the case of negligible free flow conditions,
namely when the quality of the road and of the environmental conditions are such that the velocity of vehicles reduces even
at small densities. The said model can be written as follows:

@tqþ H�ðq; @xq; ~aÞ@xq ¼ K�ðq; @xq; ~aÞ@xxq; ð2:1Þ

where 0 6 ~a < 1 is a parameter which takes into account the quality of the road-environment. More precisely ~a ¼ 0 corre-
sponds to the worse conditions and ~a ¼ 1 to the best ‘‘ideal’’ ones that might even not be reached in practical cases. Here and
in the sequel, the superscript ‘‘�’’ is used as a compact form to indicate the two different cases of positive and negative den-
sity gradient; in fact the concept of perceived (or apparent) density (introduced in [9]) has been used in [11], by the intro-
duction of local gradients of the density:

qþa ðq; @xqÞ ¼ qþ ð1� qÞ tanh2ð@xqÞ; q�a ðq; @xqÞ ¼ q� q tanh2ð@xqÞ; ð2:2Þ

for positive and negative density gradient respectively, such that a closure condition of Eq. (1.1) is derived as the following
expressions which depend on the local density, its gradient, and on aforesaid parameter ~a:

v�ðq; @xq; ~aÞ ¼
~a

~aþ ð1� ~aÞ exp ðq�a ðq;@xqÞÞ2

1�q�a ðq;@xqÞ

� � : ð2:3Þ

The explicit expressions of the coefficients of Eq. (2.1) are as follows:

H�ðq; @xq; ~aÞ ¼ v�ðq; @xq; ~aÞ q
1� v�ðq; @xq; ~aÞ

cosh2ð@xqÞ
M�ðq; @xqÞ þ 1

 !
; ð2:4Þ
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