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a b s t r a c t

This paper deals with solutions of diffusion-type partial dynamic equations on discrete-
space domains. We provide two methods for finding explicit solutions, examine their
asymptotic behavior and time integrability. These properties depend significantly not only
on the underlying time structure but also on the dimension and symmetry of the problem.
Throughout the paper, the results are interpreted in the context of random walks and
related stochastic processes.
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1. Introduction

Semidiscrete partial differential equations have attracted attention of researchers in several applied areas where the dis-
crete space occurs naturally, e.g. in biology [4], signal and image processing [13], and stochastic processes [7]. Nonetheless,
to our knowledge there is no systematic theory of semidiscrete partial differential equations. In this work, we study solutions
of partial dynamic equations of diffusion type on domains with discrete space and general time structure (continuous, dis-
crete and other). We consider the equation

uDt ðx; tÞ ¼ auðxþ 1; tÞ þ buðx; tÞ þ cuðx� 1; tÞ; x 2 Z; t 2 T; ð1:1Þ

where a; b; c 2 R are constants and T is a time scale (arbitrary closed subset of R). The symbol uDt denotes the partial D-deriv-
ative with respect to t, which coincides with the standard partial derivative ut when T ¼ R, or the forward partial difference
Dtu when T ¼ Z. Since the differences with respect to x are not used, we omit the lower index t in uDt and write uD only. The
time scale calculus is used as a tool to obtain general results from which the corresponding statements for discrete and semi-
discrete diffusion follow easily. Readers who are not familiar with the basic principles and notations of this theory are kindly
asked to consult Stefan Hilger’s original paper [10] or the survey [3]. This paper contributes to recent efforts of several
researchers who have studied partial dynamic equations (e.g. [1,2,11,12,19]).

The present work is a free continuation of our recent paper [18], where we started to develop a systematic theory for
equations of the form (1.1). Note that if b ¼ �2a ¼ �2c, the equation represents the space-discretized version of the classical
diffusion equation (therefore, we talk about diffusion-type equations). Also, if b ¼ �a and c ¼ 0 (or b ¼ �c and a ¼ 0), we get
the transport equation with discrete space. Another motivation for questions studied in this paper comes from the connec-
tion of (1.1) with Markov processes. Indeed, consider a one-dimensional discrete-time random walk on Z. Let p; q; r 2 ½0;1� be
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the probabilities of going left, standing still, and going right, respectively (so that pþ qþ r ¼ 1). If uðx; tÞ is the probability of
visiting point x at time t, we get uðx; t þ 1Þ ¼ puðxþ 1; tÞ þ quðx; tÞ þ ruðx� 1; tÞ, or the equivalent diffusion-type equation

uDðx; tÞ ¼ puðxþ 1; tÞ þ ðq� 1Þuðx; tÞ þ ruðx� 1; tÞ; x 2 Z; t 2 N0;

which, coupled with the initial condition uð0;0Þ ¼ 1 and uðx;0Þ ¼ 0 for x – 0, describes the random walk starting from the
origin.

Next, consider a continuous-time random walk on Z. Assume that in a time interval ½t; t þ h�, the probabilities of going left
and right are phþ oðhÞ and rhþ oðhÞ, respectively. It follows that uðx; t þ hÞ ¼ ðphþ oðhÞÞuðx; t þ 1Þ þ ð1� ph� rhþ
oðhÞÞuðx; tÞ þ ðrhþ oðhÞÞuðx; t � 1Þ. By subtracting uðx; tÞ, dividing by h and passing to the limit h! 0, we get the diffu-
sion-type equation

uDðx; tÞ ¼ puðxþ 1; tÞ þ ð�p� rÞuðx; tÞ þ ruðx� 1; tÞ; x 2 Z; t 2 Rþ0 :

Finally, for a general time scale T, solutions of (1.1) can be regarded as heterogeneous stochastic processes. This interesting
relationship is discussed throughout the paper and illustrates our results.

In Section 2, we briefly summarize the main results from [18]. In Section 3, we present two methods for finding explicit
solutions of (1.1) once a particular time scale is given. These methods are then used in Section 4 to examine the asymptotic
behavior of solutions as well as finiteness of their time integrals. We calculate the exact values of these integrals for T ¼ Z

and T ¼ R, and discover the surprising fact that they coincide. In Section 5, multidimensional diffusion equations are briefly
considered and we prove a slight generalization of Pólya’s famous result [17] on the recurrence of symmetric random walks
in ZN .

2. Preliminaries

Let us start with a short overview of the main results from [18], which will be used later. We consider dynamic diffusion-
type equations of the form

uDðx; tÞ ¼ auðxþ 1; tÞ þ buðx; tÞ þ cuðx� 1; tÞ; x 2 Z; t 2 T; ð2:1Þ

where a; b; c are real numbers. The graininess of T influences the behavior of solutions in a substantial way, and some of the
results presented in this section assume that the graininess is sufficiently small. The paper [18] contains a wealth of exam-
ples showing that these graininess conditions are indeed necessary.

The first result is an existence-uniqueness theorem for Eq. (2.1). Assume that X is a Banach space, t0 2 T, and A is a
bounded linear operator on X such that I þ AlðtÞ is invertible for every t 2 ð�1; t0ÞT, where l stands for the graininess func-
tion. Recall that the time scale exponential function t # eAðt; t0Þ is defined as the unique solution of the initial-value problem

xDðtÞ ¼ AxðtÞ; t 2 T;

xðt0Þ ¼ I:
ð2:2Þ

We use the symbol ‘1ðZÞ to denote the space of all bounded real sequences fungn2Z.

Theorem 2.1. Consider an interval ½T1; T2�T � T and a point t0 2 ½T1; T2�T. Let u0 2 ‘1ðZÞ. Assume that lðtÞ < 1
jajþjbjþjcj for every

t 2 T1; t0½ ÞT. Let the operator A : ‘1ðZÞ ! ‘1ðZÞ be given by

Aðfungn2ZÞ ¼ faunþ1 þ bun þ cun�1gn2Z:

Also, define the function U : ½T1; T2�T ! ‘1ðZÞ by UðtÞ ¼ eAðt; t0Þu0; t 2 ½T1; T2�T. Then

uðx; tÞ ¼ UðtÞx; x 2 Z; t 2 ½T1; T2�T;

is the unique bounded solution of Eq. (2.1) on Z� ½T1; T2�T such that uðx; t0Þ ¼ u0
x for every x 2 Z.

The superposition principle allows us to easily find explicit solutions for general initial conditions.

Theorem 2.2. Let u : Z� ½t0; T�T ! R be the unique bounded solution of Eq. (2.1) corresponding to the initial condition

uðx; t0Þ ¼
1 if x ¼ 0;
0 if x – 0:

�

If fckgk2Z is an arbitrary bounded real sequence, then

vðx; tÞ ¼
X
k2Z

ckuðx� k; tÞ

is the unique bounded solution of Eq. (2.1) corresponding to the initial condition vðx; t0Þ ¼ cx; x 2 Z.
The next theorem shows that for solutions of Eq. (2.1) with aþ bþ c ¼ 0, the sum

P
x2Zuðx; tÞ is the same for all t.

A. Slavík, P. Stehlík / Applied Mathematics and Computation 234 (2014) 486–505 487



Download English Version:

https://daneshyari.com/en/article/6421204

Download Persian Version:

https://daneshyari.com/article/6421204

Daneshyari.com

https://daneshyari.com/en/article/6421204
https://daneshyari.com/article/6421204
https://daneshyari.com

