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a b s t r a c t

Our work proposes two methods that estimate the eigenvalue bounds (left/right for real
and imaginary parts) of complex interval matrices. The first method expresses each bound
as an algebraic sum of weighted matrix measures, where the measure corresponds to the
spectral norm and the weighting matrix is diagonal and positive definite, with unknown
entries. The optimization with respect to the entries of the weighting matrix yields the best
value of the bound; the computational approach is ensured as the minimization of a linear
objective function subject to bilinear-matrix-inequality constraints and interval
constraints. The bounds are proved to be better than those provided by other estimation
techniques. The second method constructs four real matrices so that each of them can
be exploited as a comparison matrix for the complex interval matrix and allows the
estimation of one of the eigenvalue bounds. The two methods we propose rely on different
mathematical backgrounds, and between the resulting bounds no firm inequality can be
stated; therefore, they are equally useful in applications, as reflected by the numerical case
studies presented in the paper.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let the real matrices A�;Aþ;B�;Bþ 2 Rn�n satisfy the componentwise inequalities A� 6 Aþ;B� 6 Bþ, and define the real
interval matrices

A ¼ ½A�;Aþ� ¼ A0 þ ½�RA;RA� ¼ A 2 Rn�nj A� 6 A 6 Aþ
� �

� Rn�n; ð1Þ

B ¼ ½B�;Bþ� ¼ B0 þ ½�RB;RB� ¼ B 2 Rn�nj B� 6 B 6 Bþ
� �

� Rn�n ð2Þ

having A0 ¼ 1
2 ðA

� þ AþÞ;B0 ¼ 1
2 ðB

� þ BþÞ as their centers, and the nonnegative matrices RA ¼ 1
2 ðA

þ � A�ÞP
0;RB ¼ 1

2 ðB
þ � B�ÞP 0 as their radii.

The family (set) of complex matrices

C ¼ Aþ jB ¼ C ¼ Aþ jBj A 2 A; B 2 Bf g � Cn�n; ð3Þ

where j is the imaginary unit, i.e. j2 ¼ �1, is called a complex interval matrix. For the description of C we are also going to use
the complex matrices C0 ¼ A0 þ jB0 2 Cn�n and R ¼ RA þ jRB 2 Cn�n, with A0;B0;RA;RB 2 Rn�n introduced above.
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For a matrix C 2 C, let kkðCÞ; k ¼ 1; . . . ;n, denote its eigenvalues (i.e. the roots of its characteristic polynomial

vCðkÞ ¼ det kIn � Cð Þ). Given an interval matrix C � Cn�n, the union
S

C2C

S
k¼1;...;n

kkðCÞ
( )

� Cn defines the eigenvalue-set of C.

The investigation of the location in C of the eigenvalue-set presents an intrinsic mathematical motivation and, concom-
itantly, is related to all research areas where interval matrices offer effective exploration tools. For instance, the evaluation of
the convergence rates for numeric algorithms, or the analysis of the dynamic properties exhibited by uncertain linear sys-
tems are just two topics of already known interest for interval-matrix-based approaches.

The exact bounds of the eigenvalue-range of C are defined for the real parts by:

R�ðCÞ ¼min
C2C

min
k¼1;...;n

RekkðCÞ; RþðCÞ ¼max
C2C

max
k¼1;...;n

RekkðCÞ ð4Þ

and for the imaginary parts by:

I�ðCÞ ¼min
C2C

min
k¼1;...;n

ImkkðCÞ; IþðCÞ ¼max
C2C

max
k¼1;...;n

ImkkðCÞ: ð5Þ

Generally speaking, the values of the exact bounds (4) and (5) are not available, and, therefore, different methods have been
devised for estimating these unavailable values, as commented below. Our comments do not refer to the methods designed
for symmetrical interval matrices, which are based on specialized results.

In the case of real interval matrices of form A (1), seminal ideas for estimating the exact bounds (4) and (5) are reported
by the following works. [1] uses some symmetric and skew-symmetric constant matrices built from A0 and RA; [2] searches
fixed points of a function constructed from A0 and parameterized in accordance with RA (the procedure refers only to the
estimation of the right bound in (4)); [3] develops an evolutionary strategy; [4] applies the eigenvalue perturbation theory
to A0, taking into account the information given by RA (the procedure refers only to the estimation of the bounds in (4)); [5]
exploits the continuity of the characteristic polynomials (the procedure is suitable for sparse structures); [6] elaborates a
filtering technique. A thorough comparative analysis of the methods in [1,2,4] accompanied by relevant numerical tests is
presented by our recent article [7].

In the case of complex interval matrices of form C (3), estimations of the exact bounds (4) and (5) are proposed by the
following papers. [8] utilizes some Hermitian and skew-Hermitian constant matrices built from C0 and R (the procedure ex-
tends the scenario created by [1] for the real case); [9] adapts the estimation for interval matrices of general form to a frame-
work that allows the use of algorithms existing for symmetric interval matrices, [10] relies on the concept of radii
polynomials in order to apply the contraction mapping theory.

The current paper provides novel estimations of the exact bounds defined by (4) and (5). Two types of methods are con-
sidered, their principles being summarized below.

� The first estimation principle uses A0;B0;RA;RB 2 Rn�n to express each bound of C eigenvalue-range as an algebraic sum of
weighted matrix measures, where the weighting matrix is diagonal and positive-definite. Each such a sum is optimized
with respect to the weighting-matrix entries, and the numerical tractability is ensured as an extreme value problem,
defined by a linear objective function subject to bilinear-matrix-inequality constraints and interval constraints.
� The second estimation principle uses A�;Aþ;B�;Bþ 2 Rn�n to construct four real matrices which are exploited as comparison

matrices for the whole family represented by C. Each comparison matrix is proved to have a real eigenvalue that estimates
one of the bounds of C eigenvalue-range.

The two methods exploit different mathematical backgrounds and, in general no inequality holds true between the
resulting bounds – fact which means a ‘‘competition’’ between the two methods when studying an arbitrary interval matrix.

The current paper improves and enlarges the techniques used in our previous works [11–13]. Unlike Proposition 1 in [11],
and Corollary 1 in [12], where the investigations are limited to the bounds of the real parts of the eigenvalues for real interval
matrices, this paper covers both real and imaginary parts of complex interval matrices. Thus, the mentioned previous results
are incorporated by the current paper as particular cases. On the other hand, this paper obtains better approximations for the
values defined by (4) and (5), than reported in [13], as a consequence of refining the matrix-measure-based strategy for the
majorization (respectively minorization) of the real and complex parts of the eigenvalues.

Besides the estimation improvement commented above relative to our previous work [13], we prove that the bounds pro-
vided by the first estimation principle in the current paper are better than those given in [1,8,9]. In order to refer to the esti-
mated bounds proposed by the cited papers, as well as by the current paper, we are going to use the notations
R�� ðCÞ;R

þ
�ðCÞ;I

�
�ðCÞ;I

þ
�ðCÞ, where the generic subscript ‘‘�’’ is particularized for the mentioned works, as follows ‘‘Hk’’ for

[9], ‘‘Hz’’ for [8], ‘‘Ma’’ for [13], ‘‘Rn’’ for [1], ‘‘T2’’ and ‘‘T3’’ for Theorem 2, and, respectively Theorem 3 of the current paper.
In all these cases, the estimation methods provide outer bounds, which, compared with the exact bounds defined by (4) and
(5), satisfy the inequalities:

R�� ðCÞ 6 R�ðCÞ 6 RþðCÞ 6 Rþ� ðCÞ ð6Þ

and, respectively,

I�� ðCÞ 6 I�ðCÞ 6 IþðCÞ 6 Iþ� ðCÞ: ð7Þ
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