An algorithm of polynomial order for computing the covering dimension of a finite space

D.N. Georgiou ${ }^{\mathrm{a}, *}$, A.C. Megaritis ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematics, University of Patras, 26504 Patras, Greece
${ }^{\mathrm{b}}$ Optics and Optometry Department, Technological Educational Institute of Western Greece, Aigio, Greece

A R T I C L E IN F O

Keywords:

Algorithm of polynomial order
Covering dimension
Finite space
Incidence matrix

Abstract

Finite topological spaces and the notion of dimension play an important role in digital spaces, computer graphics, image synthesis and image analysis (see, Herman, 1998 [9]; Khalimsky et al., 1990 [10]; Rosenfeld, 1979 [15]). In Georgiou and Megaritis (2011) [7] we gave an algorithm for computing the covering dimension of a finite space X using the notion of the incidence matrix of X. This algorithm has exponential order. In this paper we give a new algorithm of polynomial order for computing the covering dimension of a finite space.

© 2014 Published by Elsevier Inc.

1. Preliminaries

The class of finite topological spaces was first studied by P.A. Alexandroff in 1937 (see [1]). Many researchers are currently working on finite spaces (see, for example [2,3,5,6,8-13,15-18]).

In what follows we denote by $X=\left\{x_{1}, \ldots, x_{n}\right\}$ a finite topological space of n elements and by \mathbf{U}_{i} the smallest open set of X containing the point $x_{i}, i=1, \ldots, n$. Also, we denote by ω the first infinite cardinal.

The $n \times n$ matrix $T_{X}=\left(t_{i j}\right)$, where

$$
t_{i j}=\left\{\begin{array}{cc}
1, & \text { if } x_{i} \in \mathbf{U}_{j} \\
0, & \text { otherwise }
\end{array}\right.
$$

is called the incidence matrix of X (see, for example [17]). We denote by c_{1}, \ldots, c_{n} the n columns of the matrix T_{X} and by $\mathbf{1}$ the $n \times 1$ matrix with all elements equal to one.

Let

$$
c_{i}=\left(\begin{array}{c}
c_{1 i} \\
c_{2 i} \\
\vdots \\
c_{n i}
\end{array}\right) \text { and } c_{j}=\left(\begin{array}{c}
c_{1 j} \\
c_{2 j} \\
\vdots \\
c_{n j}
\end{array}\right)
$$

be two $n \times 1$ matrices. We write $c_{i} \leqslant c_{j}$ if and only if $c_{k i} \leqslant c_{k j}$ for each $k=1, \ldots, n$. Also, by max c_{i} we denote the maximum of the set $\left\{c_{1 i}, c_{2 i}, \ldots, c_{n i}\right\}$.

For the following notions see for example [4].

[^0]Let X be a space. A cover of X is a non-empty set of subsets of X, whose union is X. A cover c of X is said to be open (closed) if all elements of c is open (closed). A family r of subsets of X is said to be a refinement of a family c of subsets of X if each element of r is contained in an element of c.

Define the order of a family c of subsets of a space X as follows:
(a) $\operatorname{ord}(c)=-1$ if and only if $c=\{\emptyset\}$.
(b) $\operatorname{ord}(c)=k$, where $k \in \omega$, if and only if the intersection of any $k+2$ distinct elements of c is empty and there exist $k+1$ distinct elements of c, whose intersection is not empty.
(c) $\operatorname{ord}(c)=\infty$, if and only if for every $k \in \omega$ there exist k distinct elements of c, whose intersection is not empty.

The covering dimension of a space X (see, for example [4,14]), denoted by dim, is defined as follows: $\operatorname{dim}(X) \leqslant k$, where $k \in\{-1\} \cup \omega$ if and only if for every finite open cover c of the space X there exists a finite open cover r of X, refinement of c, with order less than or equal to k.

In [7] we gave an algorithm for computing the covering dimension dim of a finite topological space $X=\left\{x_{1}, \ldots, x_{n}\right\}$ using the following propositions:

Proposition 1.1 (See Proposition 2.1 of [7]). Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite space. Then, $\operatorname{dim}(X) \leqslant k$, where $k \in \omega$ if and only if there exists an open cover $\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}$ of X such that $\operatorname{ord}\left(\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}\right) \leqslant k$.

Proposition 1.2 (See Proposition 2.4 of [7]). If $c_{j}=\mathbf{1}$ for some $j \in\{1, \ldots, n\}$, then $\operatorname{dim}(X)=0$.

Proposition 1.3 (See Proposition 2.5 of [7]). Let $c_{j_{1}}, \ldots, c_{j_{m}}$ be m columns of the matrix T_{X}. Then, $c_{j_{1}}+\cdots+c_{j_{m}} \geqslant \mathbf{1}$ if and only if the family $\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}$ is an open cover of X.

Proposition 1.4 (See Proposition 2.6 of [7]). Let $c_{j_{1}}, \ldots, c_{j_{m}}$ be m columns of the matrix T_{X} and $k=\max \left(c_{j_{1}}+\cdots+c_{j_{m}}\right)$, that is k is the maximum element of the $n \times 1$ matrix $c_{j_{1}}+\cdots+c_{j_{m}}$. Then,

$$
\operatorname{ord}\left(\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}\right)=k-1
$$

Proposition 1.5 (See Proposition 2.9 of [7]). Let $c_{j_{1}}, \ldots, c_{j_{m}}$ be m columns of the matrix T_{X} such that $c_{j_{1}}+\cdots+c_{j_{m}} \geqslant 1$. If $c_{r_{1}}+\cdots+c_{r_{q}} \nsupseteq \mathbf{1}$ for every $q<m$ and $\left\{r_{1}, \ldots, r_{q}\right\} \subseteq\{1, \ldots, n\}$, then

$$
\operatorname{dim}(X)=\max \left(c_{j_{1}}+\cdots+c_{j_{m}}\right)-1
$$

An upper bound on the number of iterations of the algorithm is the number $2^{n}-1$.
In this paper we give a new algorithm of polynomial order for computing the covering dimension of an arbitrary finite topological space. An upper bound on the number of iterations of this algorithm is the number $\frac{1}{2} n^{2}+\frac{3}{2} n-3$. In particular, for finite T_{0}-spaces, an upper bound on the number of iterations of this algorithm is the number $\frac{1}{2} n^{2}-\frac{1}{2} n$.

2. A new algorithm for computing the covering dimension

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite space and T_{X} the $n \times n$ incidence matrix. In what follows we denote by $\mathcal{C}(X)$ the set of all subsets $\left\{x_{j_{1}}, \ldots, x_{j_{m}}\right\}$ of X such that the family $\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m}}\right\}$ is an open cover of X. Also by \leqslant we define a relation on the set $\mathcal{C}(X)$ as follows:

$$
\left\{x_{j_{1}}, \ldots, x_{j_{m_{1}}}\right\} \leqslant\left\{x_{j_{1}^{\prime}}, \ldots, x_{j_{m_{2}}^{\prime}}\right\}
$$

if and only if

$$
\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m_{1}}}\right\} \subseteq\left\{\mathbf{U}_{j_{1}^{\prime}}, \ldots, \mathbf{U}_{j_{m_{m_{2}}^{\prime}}}\right\}
$$

This relation is a preorder on the set $\mathcal{C}(X)$.
Definition 2.1. Every minimum element of $(\mathcal{C}(X), \leqslant)$ is called minimal family.

Remark 2.2.

(1) For every finite topological space X there exist minimal families on the set $\mathcal{C}(X)$ (see Proposition 2.4).
(2) If $\left\{x_{j_{1}}, \ldots, x_{j_{m_{1}}}\right\}$ and $\left\{x_{j_{1}^{\prime}}, \ldots, x_{j_{m_{2}}^{\prime}}\right\}$ are two minimal families, then $\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m_{1}}}\right\}=\left\{\mathbf{U}_{j_{1}}, \ldots, \mathbf{U}_{j_{m_{2}}}\right\}$.

https://daneshyari.com/en/article/6421284

Download Persian Version:

https://daneshyari.com/article/6421284

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: georgiou@math.upatras.gr (D.N. Georgiou), megariti@master.math.upatras.gr (A.C. Megaritis).

