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a b s t r a c t

This paper considers the stability of moments of stochastic systems, such as stability of the
mean or mean-square stability. The exponential growth behavior of moments is compared
to almost sure exponential growth via Lyapunov exponents. We develop a series of indices
that are useful to describe system performance under random perturbations. The theory is
applied to two examples, including an electric power system.

� 2014 The Authors. Published by Elsevier Inc.

1. Introduction

Stability at operating points is one of the key requirements of engineering systems. As long as the system is given by
time-invariant dynamics, linearization at the operating point gives local stability information that can be extended through
incorporating some nonlinear features, e.g., via the use of normal forms, see [1]. If the system under consideration has time-
varying dynamics, the usual modal approach fails since for these systems eigenvalues do not describe the stability behavior
of the linearized system. Therefore, one has to approach (exponential) stability directly via the Lyapunov exponents of the
system at the operating point.

An important class of systems with time varying dynamics are those systems that are subject to sustained random per-
turbations, such as load behavior, environmental effects, or intermittent generation in power systems. The interaction be-
tween system dynamics and perturbation falls into two groups: (i) the random noise changes the operating point of the
system, or (ii) the equilibrium point persists under all perturbations. We have developed performance indices for case (i)
in [2], and analyzed one specific approach in case (ii) in [3] using almost sure Lyapunov exponents. This paper develops sev-
eral performance indices for case (ii), analyzes their relationships, and compares the results for several examples. The key
idea is the look at the sample (exponential) growth rates for trajectories and at the growth rates of moments of the trajec-
tories, such as the stability of the mean, or mean square stability involving the second moment. Both points of view result in
potentially useful performance criteria for power systems.

2. Mathematical background

2.1. The system model

We start from a nonlinear differential equation _yðtÞ ¼ f ðyðtÞ; nðt;xÞÞ in Rd with sustained random perturbation nðt;xÞ. In
order to analyze optimal parameter settings for stability at an operating point, we linearize the system equations at the equi-
librium point y�. Linearization (with respect to y) at the equilibrium results in the system
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_xðtÞ ¼ Aðnðt;xÞÞxðtÞ in Rd ð1Þ

where Aðnðt;xÞÞ is the Jacobian of f ðyðtÞ; nðt;xÞÞ at y�. We denote by uðt; x;xÞ the trajectories of (1) with initial value
uð0; x;xÞ ¼ x 2 Rd. We think of a given probability space ðX;F; PÞ under the usual conditions on which the Wiener process
in (2) is defined. We use the notation x 2 X, and all expectations Eð�Þ are with respect to the given probability measure P.

The random perturbation can be considered as white noise, leading to a stochastic differential equation for (1), or as a
colored, bounded noise. In this paper we discuss the latter situation since macroscopic perturbations in engineering systems
generally are non-white; but a similar theory also holds for the white noise case, see [4] for the basics. We start from a back-
ground noise g, given by a stochastic differential equation on a compact C1-manifold M

dg ¼ X0ðgÞdt þ
Xr

i¼1

XiðgÞ � dWi on M ð2Þ

where the vector fields X0; . . . ;Xr are C1, and ‘‘�’’ denotes the Stratonovic stochastic differential. We assume that (2) has a
unique stationary, ergodic solution g�ðt;xÞ which is guaranteed by the condition (compare [5])

dimLAfX1; . . . ;XrgðhÞ ¼ dimM for all h 2 M: ð3Þ

Here LAf�g denotes the Lie algebra generated by a set of vector fields. The background noise g�ðt;xÞ is mapped via a sur-
jective smooth function f : M ! U � Rm, f ðgÞ ¼ n, into the system perturbation nðt;xÞ. This setup allows great flexibility
when modeling the statistics of the system noise.

2.2. Lyapunov exponents

Exponential stability of the system (1) is described by Lyapunov exponents; in [6] we gave an overview of the almost sure
theory, with applications to power systems. Here we extend the analysis to moment Lyapunov exponents. The individual
Lyapunov exponents of the trajectories uðt; x;xÞ of (1) are given as

kðx;xÞ ¼ lim sup
t!1

1
t

log juðt; x;xÞj; ð4Þ

and for p 2 R the Lyapunov exponent of the pth moment is given by

gðp; xÞ ¼ lim sup
t!1

1
t

log Ejuðt; x;xÞjp: ð5Þ

This includes for p ¼ 1 the exponential growth behavior of the mean, and for p ¼ 2 the exponential mean square stability of
the system. We again need the projection of the linear system onto the sphere Sd�1 in Rd:

_sðtÞ ¼ hðnðt;xÞ; sðtÞÞ; hðn; sÞ ¼ ðAðnÞ � qðn; sÞÞs; qðn; sÞ ¼ sT AðnÞs; ð6Þ

where ‘‘�T ’’ denotes the transpose. via identification of s and �s Eq. (6) can be considered on the projective space Pd�1. The
Lyapunov exponents of all system states x 2 Rd n f0g can be analyzed together if the perturbation affects all states. This is
expressed in the condition

dimLA Xo;h;
@

@t

� �
; ðX1; 0;0Þ; . . . ; ðXr;0;0Þ

� �
ðh; s; tÞ ¼ dimM þ d ð7Þ

for all ðh; s; tÞ 2 M � Sd�1 � R. Another approach to condition (7) is as follows: Let I be the ideal in LA Xo þ h;X1; . . . ;Xrf g gen-
erated by fX1; . . . ;Xrg. Then, by [5], Condition (7) is equivalent to dimIðh; sÞ ¼ dimM þ d� 1. This condition, which is needed
for the analysis of moment Lyapunov exponents, is slightly stronger than Condition 7 in [6], but it is generally satisfied for
systems that appear in applications, compare, e.g., [5] or [10].

Theorem 2.1. Consider the stochastic system (1) under the conditions (3) and (7). Then

1. the moment Lyapunov exponents exist as a limit and they are independent of x 2 Rd n f0g, i.e., gðpÞ � gðp; xÞ ¼ limt!1
1
t log

Ejuðt; x;xÞjp for all p 2 R,
2. the trajectory-wise Lyapunov exponents are a.s. constant and independent of x 2 Rd n f0g, i.e., k � kðx;xÞ ¼

limt!1
1
t log juðt; x;xÞj.

The proof of Theorem 2.1 is given in [7], Theorem 1 for the first part, and in [10], Theorem 4.1 for the second part upon
noticing that Conditions (3) and (7) together imply Conditions (A) and (C) in [10]. With the results from Theorem 2.1 it was
shown by Arnold in [7] that the a.s. Lyapunov exponent is the derivative of the moment Lyapunov exponent function at 0:

Corollary 2.2. Consider the stochastic system (1) under the conditions (3) and (7). Then the function gðpÞ is analytic on R, convex,
and satisfies gð0Þ ¼ 0 and g0ð0Þ ¼ k.
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