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a b s t r a c t

In this paper we investigate the instability and the propagation properties of a class of reac-
tion–diffusion equations of fourth order. Two examples are introduced, the extended Fisher
Kolmogorov equation (EFK), and the Swift–Hohenberg equation (SH). Both have been
studied before by related methods (see for example, Peletier and Rottschafer, 2004 [19];
Van Saarloos, 2003 [24]) but the analysis here will support the introduced linear
mechanism in front selection. These two equations support a patterned front solutions,
and the double eigenvalue mechanism is used to provide evidence for that and to deter-
mine a minimal front speed.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Whenever the spatial spread of a population or chemical species is of importance, reaction–diffusion equations are used.
For spatial spread, reaction–diffusion models have successfully been used in epidemic problems, pattern formation in differ-
ent biological and ecological systems and in signal transport. Good overviews are given in Britton [5] and Grindrod [11].
From a theoretical point of view, one may distinguish two types of reaction–diffusion structures: (i) global structures result-
ing from intrinsic symmetry-breaking instabilities, e.g., Turing structures [21], and (ii) localized structures associated with
fronts, i.e., steep spatial changes of concentration or densities which correspond to transitions between two states with fast
kinetics, e.g., traveling waves [5]. In many natural phenomena we encounter propagating fronts separating different phases.
Propagating fronts play an important role in the spread of epidemics, in population dynamics, or the propagation of flames
and chemical reactions. Therefore, reaction–diffusion equations have become a prototype for describing propagating front
behavior, form chemical waves to biological population.

1.1. Traveling waves and front propagation

A traveling wave is a wave which travels at constant speed without change in shape. If uðx; tÞ represents a traveling wave,
the shape of u will be the same for all time and the speed of propagation of this shape is a constant. If we look at this wave in
a traveling frame moving at the same speed it will appear stationary [16]. One of the most important properties of nonlinear
parabolic systems is their ability to support traveling wave solutions. Unlike the linear wave equation, for example, which is
hyperbolic and propagates any wave profile with a specific speed, reaction–diffusion equations may allow various wave pro-
files to propagate, each one with its own characteristic speed [11].

Traveling wave solution can be written in the form uðx; tÞ ¼ VðzÞ ¼ Vðx� ctÞ for some velocity c. Plane wave is a class of
traveling waves with VðzÞ ¼ Uðz � sÞ for some vector sÞ (i.e., u ¼ Uðz � s� ctÞ), c a scalar). This class of waves, plane waves, is
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categorized in one dimension as [9]: (1) wave trains (U periodic), (2) fronts (Uð�1Þ and Uð1Þ exist and are unequal) and (3)
pulses (Uð�1Þ exist and are equal; U not constant). There are other forms in two dimension (x ¼ ðx; yÞ; x ¼ rcosh; y ¼ rsinh),
such as: Target patterns (uðx; tÞ ¼ Uðr; tÞ; U periodic in t), and Rotating spiral patterns (uðx; tÞ ¼ Uðr; h� ctÞ; U periodic in
second argument).

The propagation of a front into an unstable state is a problem that emerges in many branches of the natural sciences.
These fronts may be classified as: (1) Uniformly translating fronts, which are in the form uðzÞ ¼ uðx� ctÞ, where c is the front
speed. In this class of fronts invasion could be either monotonic or oscillatory (see Fig. 1(a) and (b), which represent possible
solutions of Fisher’s equation (1)). (2) Pattern forming fronts, a front that generates a nontrivial pattern behind the wavefront.
The front has a finite speed while the pattern is often stationary (see Fig. 1(c), represent possible solution of SH equation [6]).
Thus these pattern fronts are typically not in the form uðx� ctÞ, and instead they are spatially and temporally periodic: they
are of the type uðz; tÞ ¼ uðx� ct; tÞ, with uðz; tÞ periodic in t with period T;uðz; tÞ ¼ uðz; t þ TÞ, thus in our analysis the pertur-
bations are assumed in that form as we will see later.

1.2. Front selection

The prototypical model for reaction–diffusion systems is the Fisher-type nonlinear diffusion equation (scalar monosta-
ble), which we use here to illustrate some general principles:

@u
@t
¼ @

2u
@x2 þ FðuÞ; ð1Þ

where u > 0 may be interpreted as a population density, Fð0Þ ¼ Fð1Þ ¼ 0. This equation was introduced in 1937 by Fisher
[10], with FðuÞ ¼ uð1� uÞ. At the same time by Kolmogorov, together with Petrovskii and Piskunov [13] (hereafter (1) re-
ferred to as FKPP). In their work of 1937, Kolmogorov et al. proved the existence of front solutions u ¼ Uðx� ctÞ, character-
ized by their velocity, c, such that

c P c0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
F 0ð0Þ

q
ð2Þ

and this result is obtained by a linearization about u ¼ 0. Moreover, under some assumption on F, they proved that the FKPP-
equation, Eq. (1), with a sufficiently decaying initial data has solutions with speed c0. For more general monostable equa-
tions, it was shown rigorously by Aronson and Weinberger [2], for a sufficiently localized initial condition the solutions of
(1) evolve into fronts with a minimal allowed speed cmin, such that
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thus the propagating speed is either equal to or larger than c0. Also, they showed that a monotonic traveling wave exists for
all speeds c P cmin, and none for c < cmin. Therefore, from these results two selection mechanisms appeared: a linear and non-
linear selection of the propagation speed. In a linear selection mechanism the front dynamics can be understood by linear
analysis since it is essentially determined by linearization near the unstable steady state (u ¼ 0 in case of FKPP equation),
so the front is pulled by its leading edge (see Fig. 1(a)), and in this case the selected front is called pulled front. However,
for the selected fronts with speeds larger than the linear front speed, the details of the nonlinearity of the reaction term,
FðuÞ, are important. In this case, the front dynamics are referred to as pushed, meaning that the front is pushed by its (non-
linear) interior, and a nonlinear analysis is required to determine the front speed. A nonlinear selection principle has been
proposed to that aim (see [24]). Fisher’s equation has been studied extensively, considering the traveling wave existence
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Fig. 1. Schematic representation of some front types, all moving to the right with speed c. (a) Monotonic uniform translating front, represents solution of
Fisher’s equation (1) when speed c > 2 . (b) Front invading the unstable state in oscillatory manner, represents solution of Fisher’s equation (1) when speed
c < 2. (c) Pattern forming front, a front moving to the right leaving a pattern behind. There are possible states behind the front, such as limit cycles,
stationary patterns, oscillatory patterns, and spatio-temporal patterns.
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