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a b s t r a c t

The numerical solution in one space dimension of advection–reaction–diffusion systems
with nonlinear source terms may invoke a high computational cost when the presently
available methods are used. Numerous examples of finite volume schemes with high order
spatial discretisations together with various techniques for the approximation of the
advection term can be found in the literature.

Almost all such techniques result in a nonlinear system of equations as a consequence of
the finite volume discretisation especially when there are nonlinear source terms in the
associated partial differential equation models.

This work introduces a new technique that avoids having such nonlinear systems of
equations generated by the spatial discretisation process when nonlinear source terms in
the model equations can be expanded in positive powers of the dependent function of
interest.

The basis of this method is a new linearisation technique for the temporal integration of
the nonlinear source terms as a supplementation of a more typical finite volume method.
The resulting linear system of equations is shown to be both accurate and significantly fas-
ter than methods that necessitate the use of solvers for nonlinear system of equations.
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1. Introduction

The use of advection–reaction–diffusion (ARD) equations for modelling biological processes can provide insight and per-
spective into the development of complex yet robust behaviour in living systems, that otherwise is difficult to achieve by
direct or indirect observation of a living system. As a result, there exists now a substantial and increasing body of literature
dealing with mathematical models of phenomena as diverse as tumour growth and invasion [1], the movement of cells in
tissues [2] and pattern formation [3].

Usually the transport component of such models are dominantly diffusive or dominantly advective but there is a devel-
oping interest in problems where the contribution of both processes is important as indeed are the magnitudes of the reac-
tion terms [4]. Although some traction in determining the behaviour of such systems may be gained by examining them at
diminishing limits of diffusion or advection, the numerical solution of the full system can prove problematic. Such is the case
for the mathematical models of embryologic development [5] where the system smoothly makes the transition from being
dominantly parabolic, exhibiting smooth-fronted travelling waves, to dominantly hyperbolic with shock-fronted travelling
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waves. Typically the methods adopted to reliably capture the travelling wavefronts in such models employ flux-limiting or
gradient averaging techniques at the front [4].

Here we introduce a new method for numerically solving such ARD systems in one space dimension, based on the usual
finite volume paradigm [6] with a third order upwinding scheme [7] for the calculations of the advection term in space and
by employing a very effective integral approximation technique in time for chosen nonlinear reaction terms. This temporal
integration approximation has been used in finite element and finite difference methods for solving partial differential equa-
tions where source term linearisation is required, see for example [8,9]. We find that the use of this linearisation technique in
a finite volume method for solving the problems of our interest has been very effective in terms of computational cost for the
simulations. We illustrate how the numerical scheme is implemented for a class of multi-species partial differential equation
models where the diffusion component of each balance equation is taken to be Fickian and the advective velocity depends
upon the gradient of another species. Such models are typically used in the description of chemotactic phenomena where
cellular invasion is directed by a diffusive attractant [4,5]. We also demonstrate the effectiveness of the method described
here by resolving a number of recent example models within this domain of advection–reaction–diffusion systems.

These models usually conform to the following description of two (or more) interacting species uðx; tÞ and cðx; tÞ say, both
of which disperse by a process modelled as Fickian diffusion. Additionally species uðx; tÞ, usually taken to be a population
density of some cellular species in time t at position x, is being advectively transported with a velocity determined by the
gradient of another species cðx; tÞ. As a generic example of such systems we will take the following equations to hold for
0 < x < L <1 and t > 0;
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where f ðu; cÞ and hðu; cÞ describe the reaction between the species, and Du and Dc are diffusion coefficients. The function vðcÞ
describing the sensitivity of the cells to the chemotactic signal is variously taken to be a constant or a nonlinear function of c,
for example vðcÞ ¼ j; vðcÞ ¼ 1=ð1þ jcÞ or vðcÞ ¼ jc2 � jc þ 1 where j is a constant [10]. Initial and boundary conditions
may be generally represented as appropriate.

Although we are considering here only one dimensional systems involving 2 or 3 species, the methods described naturally
extend to higher dimensional problems with more species.

2. Discretisation of equations using finite volume method

The model equations are discretised using the vertex centered control volume method with a uniform mesh. The nodes,
xi ¼ idx; i ¼ 0;1;2;3; . . . ;N, are chosen along the x-axis between x ¼ x0 ¼ 0 and x ¼ xN ¼ L; where Ndx ¼ L. Control volumes
are constructed around the interior nodes with control volume faces at xiw ¼ xi � dx

2 and xie ¼ xi þ dx
2 for i ¼ 1;2;3; . . . ;N � 1 as

shown in Fig. 1(a). At the ends of the domain ½0; dx
2 � and ½L� dx

2 ; L�, see Fig. 1(b), are considered as the boundary control
volumes.

Integration of Eq. (1) over the control volume ½xiw; xie� ¼ xi � dx
2 ; xi þ dx

2
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w.r.t. x gives the following equation:
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Fig. 1. Interior and boundary control volumes.

446 J. Pasdunkorale Arachchige, G.J. Pettet / Applied Mathematics and Computation 231 (2014) 445–462



Download English Version:

https://daneshyari.com/en/article/6421320

Download Persian Version:

https://daneshyari.com/article/6421320

Daneshyari.com

https://daneshyari.com/en/article/6421320
https://daneshyari.com/article/6421320
https://daneshyari.com

