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a b s t r a c t

The first order loss function and its complementary function are extensively used in prac-
tical settings. When the random variable of interest is normally distributed, the first order
loss function can be easily expressed in terms of the standard normal cumulative distribu-
tion and probability density function. However, the standard normal cumulative distribu-
tion does not admit a closed form solution and cannot be easily linearised. Several works in
the literature discuss approximations for either the standard normal cumulative distribu-
tion or the first order loss function and their inverse. However, a comprehensive study on
piecewise linear upper and lower bounds for the first order loss function is still missing. In
this work, we initially summarise a number of distribution independent results for the first
order loss function and its complementary function. We then extend this discussion by
focusing first on random variables featuring a symmetric distribution, and then on nor-
mally distributed random variables. For the latter, we develop effective piecewise linear
upper and lower bounds that can be immediately embedded in MILP models. These linear-
isations rely on constant parameters that are independent of the mean and standard devi-
ation of the normal distribution of interest. We finally discuss how to compute optimal
linearisation parameters that minimise the maximum approximation error.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Consider a random variable x and a scalar variable x. The first order loss function is defined as

Lðx;xÞ ¼ E½maxðx� x;0Þ�; ð1Þ

where E denotes the expected value. The complementary first order loss function is defined as

bLðx;xÞ ¼ E½maxðx�x;0Þ�: ð2Þ

The first order loss function and its complementary function play a key role in several application domains. In inventory con-
trol [13] it is often used to express expected inventory holding or shortage costs, as well as service level measures such as the
widely adopted ‘‘fill rate’’, also known as b service level [1, p. 94]. In finance the first order loss function may be employed to
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capture risk measures such as the so-called ‘‘conditional value at risk’’ (see e.g. [11]). These examples illustrate possible
applications of this function. Of course, the applicability of this function goes beyond inventory theory and finance.

In Section 2, we first summarise a number of distribution independent results for the first order loss function and its com-
plementary function. We then focus on symmetric and normal distributions, for which we discuss ad hoc results in Section 3.

According to one of these results, the first order loss function can be expressed in terms of the cumulative distribution
function of the random variable under scrutiny. Depending on the probability distribution adopted, integrating this function
may constitute a challenging task. For instance, if the random variable is normally distributed, no closed formulation exists
for its cumulative distribution function. Several approximations have been proposed in the literature (see e.g. [3–
5,10,12,16,17]), which can be employed to approximate the first order loss function. However, these approximations are gen-
erally nonlinear and cannot be easily embedded in mixed integer linear programming (MILP) models.

In Sections 4 and 5, we introduce piecewise linear lower and upper bounds for the first order loss function and its com-
plementary function for the case of normally distributed random variables. These bounds are based on standard bounding
techniques from stochastic programming, i.e. Jensen’s lower bound and Edmundson–Madansky upper bound [9, pp. 167–
168]. The bounds can be readily used in MILP models and do not require instance dependent tabulations. Our linearisation
strategy is based on standard optimal linearisation coefficients computed in such a way as to minimise the maximum
approximation error, i.e. according to a minimax approach – see [7,8,15] for a similar approach. Optimal coefficients for
approximations comprising from two to eleven segments will be presented in Tables 1 and 2; these can be reused to approx-
imate the loss function associated with any normally distributed random variable.

2. The first order loss function and its complementary function

Consider a continuous random variable x with support over R, probability density function gxðxÞ : R! ð0;1Þ and cumu-
lative distribution function GxðxÞ : R! ð0;1Þ. The first order loss function can be rewritten as

Lðx;xÞ ¼
Z 1

�1
maxðt � x;0ÞgxðtÞdt ¼

Z 1

x
ðt � xÞgxðtÞdt: ð3Þ

The complementary first order loss function can be rewritten as

bLðx;xÞ ¼ Z 1

�1
maxðx� t;0ÞgxðtÞdt ¼

Z x

�1
ðx� tÞgxðtÞdt: ð4Þ

We introduce the following two well-known lemmas.

Lemma 1 [14, p. 338, C.3]. The first order loss function Lðx;xÞ can also be expressed as

Lðx;xÞ ¼
Z 1

x
1� GxðtÞð Þdt: ð5Þ

Lemma 2 [14, p. 338, C.4]. The complementary first order loss function bLðx;xÞ can also be expressed as

bLðx;xÞ ¼ Z x

�1
GxðtÞdt: ð6Þ

There is a close relationship between the first order loss function and the complementary first order loss function.

Lemma 3 [14, p. 338, C.5]. The first order loss function Lðx;xÞ can also be expressed as

Lðx;xÞ ¼ bLðx;xÞ � ðx� ~xÞ; ð7Þ

where ~x ¼ E½x�.
Because of the relation discussed in Lemma 3, in what follows without loss of generality most of the results will be pre-

sented for the complementary first order loss function.
Another known result for the first order loss function and its complementary function is their convexity, which we pres-

ent next.

Lemma 4. Lðx;xÞ and bLðx;xÞ are convex in x.

Proof. It is sufficient to show that d2

dx2
bLðx;xÞ is positive; furthermore, the proof for Lðx;xÞ follows from Lemma 3 and from

the fact that �x is convex. h

For a random variable x with symmetric probability density function, we introduce the following results.
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