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a b s t r a c t

The system of partial differential equations corresponding to a line element with axial
symmetry for empty space containing an electrostatic field has been examined. The sym-
metries of field equations are obtained to derive some ansätz leading to the reduction of
variables and some exact solutions are furnished by considering the optimal system.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Symmetries in general relativity have been the subject of much study in recent years, partly because of the considerable
simplification of Einstein’s equations resulting from the assumption of one or more symmetries, partly because of interest in
the geometric significance of the symmetries, which are described by vector fields of certain geometrical objects on the man-
ifold, and partly because of the possible physical significance of the existence of these symmetries. The literature abounds
with many different techniques that have been invoked in an effort to obtain new exact solutions of Einstein field equations
[1].

In the general theory of relativity the field equations for regions containing electromagnetic fields but no matter are [2] as
follows:

Glm ¼ �8pElm

Em
l ¼ �FmaFla þ 1

4 gm
lFabFab;

ð1:1Þ

where gm
l is metric tensor, Glm is the contracted Riemann–Christoffel tensor, and Flm is the electromagnetic field tensor. This

last tensor satisfies Maxwell’s equations if we write

Flm ¼ jl;m � jm;l

Ilm
;m ¼ Il;

ð1:2Þ

where jl is the four-potential, and Il is the charge-and-current density which is equal to zero for the region free of matter.
Weyl [3] has found a class of solutions of the above equations corresponding to certain axially symmetric electrostatic

fields. In such fields the potential has only one non-vanishing component j4 (denoted hereafter by 1
2 p

�1
2 /). Weyl’s solution

is for the axially symmetric case where there is a functional relation between g44 and / of the form

g44 ¼ Aþ B/þ /2; ð1:3Þ

where A and B are arbitrary constants.
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Majumdar [4] and Papapetrou [5] have considered solutions of Eqs. (1.1) and (1.2), when no spatial symmetry is assumed,
and have given the general solution when there is a relationship between g44 and / of the form

g44 ¼ ðC þ /Þ2; ð1:4Þ

where C is a constant. Majumdar has also proved that (1.3) is the only possible functional relationship between g44 and /,
whether or not there is spatial symmetry.

With the above-mentioned exception, the only exact electrostatic solutions reported appear to be special cases of Weyl’s
solution. Among the latter are the following: the well-known solution for a charged mass-point [2], the axially symmetric
solution of Curzon [6] for several charged mass-points when the relation (1.4) exists between g44 and /, the case of an elec-
tric field of uniform direction studied by McVittie [7], the solution of Mukherji [8] for a charged line-mass, and a solution
corresponding to a particular uniform electric field given by Papapetrou [5].

In this work, we will derive certain axially symmetric electrostatic solutions of the field equations for empty space. We
use the canonical cylinder coordinates introduced by Weyl and obtained complete sets of solutions in these coordinates.

In canonical coordinates, the line element for a field with axial symmetry is

ds2 ¼ � expðkÞðdx2
1 þ dx2

2Þ � expð�qÞx2
2dx2

3 þ expðqÞdx2
4; ð1:5Þ

where the origin of coordinates is on the axis of symmetry x1, x2 is a radial coordinate, x3 is an angular coordinate and x4 is
time-like. k and q are functions of x1 and x2 only. Eqs. (1.1) and (1.2), with Il ¼ 0, yield the following set which has previ-
ously been given by [6]:

k11 þ k22 þ q2
1 þ

k2

x2
¼ 2 expð�qÞð/2

1 � /2
2Þ; ð1:6Þ

k11 þ k22 þ q2
2 �

k2

x2
� 2q2

x2
¼ �2 expð�qÞð/2

1 � /2
2Þ; ð1:7Þ

q1q2 �
q1

x2
� k1

x2
¼ 4 expð�qÞ/1/2; ð1:8Þ

q11 þ q22 þ
q2

x2
¼ 2 expð�qÞð/2

1 þ /2
2Þ; ð1:9Þ

/11 þ /22 þ
/2

x2
¼ ðq1/1 þ q2/2Þ; ð1:10Þ

where the suffixes 1 and 2 after k;q and / means partial differentiation with respect to x1 and x2.
So, we have five Eqs. (1.6)–(1.10) for the determination of three unknowns k;q and /, one can easily verify that these all

are consistent. We will first solve Eqs. (1.9) and (1.10) for q and /. It may be pointed out that Eqs. (1.9) and (1.10) are a set of
coupled, second order, nonlinear partial differential equations in q and /, hence we will concentrate on these two equations
and k can later be obtained from (1.6)–(1.8), once q and / are known. Rewriting Eqs. (1.9) and (1.10)

q11 þ q22 þ
q2
x2
¼ 2 expð�qÞð/2

1 þ /2
2Þ;

/11 þ /22 þ /2
x2
¼ ðq1/1 þ q2/2Þ:

ð1:11Þ

Due to nonlinearity of exponential order, it is difficult to obtain exact solutions of the system (1.11) and the exact solutions of
the system (1.11) may enable one to better understand the phenomena which it describes. A detailed systematic analysis
that leads to an exact analytic solution or numerical solutions for (1.11) has not been performed in literature and is therefore
desirable. Thus, the importance of the system (1.11) and the need to have some exact solutions are the main motives behind
the present study.

Exact solutions, as opposed to computer generated solutions, are of immense importance in understanding of physical
problems. The strong desire of exact and more general solutions to Einstein field equations in technological enhancement
and for research purpose made tremendous growth in the field of finding exact solutions. Exact solutions of Einstein field
equations, which can be compared with approximate or numerical results, are useful in checking validity of approximation
techniques and programs. Therefore, finding exact solutions of Einstein field equations is one of the major task.

In order to avoid the cumbersome process of solving nonlinear equations, different solution techniques are used to find
solution of field equations but mathematical techniques which generate a wide range of solutions and applicable to all type
of nonlinear differential equations are few. Lie classical method can be categorized in this class and generally a variety of
exact solutions may be furnished in a systematic manner.

Lie symmetry methods are central to the modern approach for studying nonlinear differential equations. They use the
notion of symmetry to generate solutions in a systematic manner. This theory enables to derive solutions of differential
equations in a completely algorithmic way without appealing to special lucky guesses. Thus, it is very powerful, versatile
method and generate exact solutions in a very systematic manner as compared to other methods. Applications of Lie Group
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