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a b s t r a c t

In this paper, we first introduce two dimensional block pulse functions and the block pulse
operational matrices of the fractional order integration. Also the block pulse operational
matrices of the fractional order differentiation are obtained. Then we present a computa-
tional method based on the above results for solving a class of fractional partial differential
equations. Transforming the initial equation into a Sylvester equation. The error analysis of
the method is given. The method is computationally attractive and applications are dem-
onstrated by some numerical examples. Moreover, comparing the methodology with the
known technique shows that our approach is more efficient and more convenient.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Fractional differential equations are generalized from integer order ones, which are achieved by replacing integer order
derivatives by fractional ones. Compared with integer order differential equations, their advantages are capability of simu-
lating natural physical process and dynamic system more accurate [1–3]. Fractional calculus has become the focus of interest
for many researchers in different field of science and engineering. A lot of research has shown the advantageous use of the
fractional calculus in the modeling and control of many dynamical systems [4,5]. For example, fractional calculus is applied
to fluid-dynamic traffic, continuum and statistical mechanics, frequency dependent damping behavior of many viscoelastic
materials, colored noise, economics, control theory, signal processing [6]. One of the main difficulties is how to solve the frac-
tional differential equations, some methods were proposed to solve them. The most commonly used ones are Variational
Iteration Method [7], Adomian Decomposition Method [8,9], Generalized Differential Transform Method [10,11], Operational
Matrix Method [12], Finite Difference Method [13] and Wavelet Method [14,15].

In this paper, our study focuses on a class of fractional partial differential equation

@au
@xa þ

@bu
@tb ¼ f ðx; tÞ; ð1Þ

subject to the initial conditions

uð0; tÞ ¼ uðx;0Þ ¼ 0; ð2Þ

where oau(x, t)/oxa and obu(x, t)/otb are fractional derivative of Caputo sense, f(x, t) is the known continuous function, u(x, t)is
the unknown function, 0 < a; b 6 1.
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There have been several methods for solving the fractional partial differential equation. Podlubny [16] used the Laplace
Transform method to solve the fractional partial differential equations with constant coefficients. Odibat [17] applied general-
ized differential transform method to solve the numerical solution of linear partial differential equations of fractional order.

Block pulse functions (BPFs), a set of orthogonal functions with piecewise constant values, have been studied and applied
as a useful tool in the synthesis, analysis and other problems of control in recent years. Because of their clearness in expres-
sions and their simplicity in formulations, these functions may have definite advantages for problems involving integrals and
derivatives [18]. In Ref. [19] the author proposed a numerical method based on Haar wavelet for solving the fractional partial
differential equation and compared numerical solution with exact solution. In this paper, we give another numerical method
based on block pulse operational matrix for solving the fractional partial differential equation.

2. Definitions of fractional derivatives and integrals

In this section, we give some necessary definitions and preliminaries of the fractional calculus theory which will be used
in this article [16].

Definition 1. The Riemann–Liouville fractional integral operator Ja of order a is given by

JauðtÞ ¼ 1
CðaÞ

Z t

0
ðt � TÞa�1uðTÞdT; a > 0; ð3Þ

J0uðtÞ ¼ uðtÞ: ð4Þ
Its properties as following:

ðiÞ JaJb ¼ Jaþb; ðiiÞ JaJb ¼ JbJa; ðiiiÞ JaJbuðtÞ ¼ JbJauðtÞ:

Definition 2. The Caputo definition of fractional differential operator is given by

Da
�uðtÞ ¼

dr uðtÞ
dtr a ¼ r 2 Nþ;

1
Cðr�aÞ

R t
0

uðrÞðTÞ
ðt�TÞa�rþ1 dT; 0 6 r � 1 < a < r:

8<
: ð5Þ

The Caputo fractional derivatives of order a is also defined as Da
�uðtÞ ¼ Jr�aDruðtÞ, where Dr is the usual integer differential oper-

ator of order r. The relation between the Riemann–Liouville operator and Caputo operator is given by the following expressions:

Da
� J

auðtÞ ¼ uðtÞ; ð6Þ

JaDa
�uðtÞ ¼ uðtÞ �

Xr�1

k¼0

uðkÞð0þÞ ðt � aÞk

k!
; t > 0: ð7Þ

3. Two dimensional block pulse functions

Block pulse functions of one dimensional have been widely used for differential and integral equations. More details for
block pulse functions of one dimensional are given in Ref. [20]. These conclusions can be extended to the two dimensional
block pulse functions.

3.1. Definition and properties

2D-BPFs are defined by

/i1 i2 ðx; tÞ ¼
1; ði1 � 1Þh1 6 x < i1h1 and ði2 � 1Þh2 6 t < i2h2;

0; otherwise;

�
ð8Þ

where i1 = 1, 2, . . ., m1 and i2 = 1, 2, . . ., m2 with positive integer values for m1, m2 and h1 ¼ T1
m1

, h2 ¼ T2
m2

, T1, T2 e N+.
They have the following properties:

1. Disjointness

/i1 ;i2 ðx; tÞ/j1 ;j2
ðx; tÞ ¼

/i1 ;i2 ðx; tÞ; i1 ¼ j1 and i2 ¼ j2;

0; otherwise:

�
ð9Þ
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