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ARTICLE INFO ABSTRACT

Keywords: Given a strongly regular Hankel matrix, and its associated sequence of moments which
Hankel matrix ) defines a quasi-definite moment linear functional, we study the perturbation of a fixed
Linear moment fUﬂCFlonal moment, i.e., a perturbation of one antidiagonal of the Hankel matrix. We define a linear
Orthogonal polynomials functional whose action results in such a perturbation and establish necessary and suffi-

Laguerre-Hahn class

. cient conditions in order to preserve the quasi-definite character. A relation between the

corresponding sequences of orthogonal polynomials is obtained, as well as the asymptotic
behavior of their zeros. We also study the invariance of the Laguerre-Hahn class of linear
functionals under such perturbation, and determine its relation with the so-called canon-
ical linear spectral transformations.
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1. Introduction
1.1. Hankel matrices and orthogonal polynomials

Given a sequence of complex numbers {1} one can define a linear functional M in the linear space of polynomials

with complex coefficients P such that
(M, X") = . (M

In the literature (see [9,17], among others), M is said to be a moment linear functional, and the complex numbers {x,}
are called the moments associated with M. The semi-infinite matrix

n=0’

n=0
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is the Gram matrix associated with the bilinear form of the linear functional (1) in terms of the canonical basis {x"} ., of P. If
there exist a family of monic polynomials such that deg(P,) = n and

(M, Py(X)Pr(X)) = V7 %0nm, 7, %0, n,m >0,
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where 8, is the Kronecker delta, then {P,},,. , is called the monic orthogonal polynomials sequence (MOPS) associated with
M.

The Hankel matrices and their determinants play an important role in the study of moment functionals. The linear func-
tional (1) is called quasi-definite if the moments matrix is strongly regular or, equivalently, the determinants of the principal
leading submatrices H, of order (n+ 1) x (n + 1) are all different from 0. In this case, there exists a unique MOPS associated
with M.

On the other hand, a linear functional M is called positive definite if and only if its moments are all real and
detH, > 0,n > 0. In such a case, there exist a unique sequence of real polynomials {p,},., orthonormal with respect to
M, i.e., the following condition holds

(Mvpn(x)pm(x» = 5ﬂ,m7
where
Pa(X) = 7, X" + 5,x"! + (lower degree terms), y,>0, n > 0.

From the Riesz representation theorem, we know that every positive definite linear functional M has an integral represen-
tation (not necessarily unique)

Mot = [ 0dp),

where u denotes a nontrivial measure supported on some infinite subset I of the real line.
One of the most important characteristics of orthonormal polynomials on the real line is the fact that any three consec-
utive polynomials are connected by the simple recurrence relation
XPy(X) = @ni1Ppi1 (X) + boiaPy(X) + @npy_4 (%), 1 >0, 3)
with initial conditions p_; =0, p, = ,ual/z, and recurrence coefficients given by

ay =/lxpn71(x)13n(x)dﬂ(x) :% o
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There are explicit formulae for orthonormal polynomials in terms of the determinants of the corresponding Hankel matrix.
The n-th degree orthonormal polynomial is given by the Heine’s formula
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while its leading coefficient is given by a ratio of two Hankel determinants

det H,_;
Yn =\ G
detH,
The n-th order reproducing kernel associated with {p,},., is defined by
n
Kn(%,y) =Y pe®)pe(y), n>0.
k=0

The name comes from the fact that, for any polynomial g, of degree at most n, we have

%m:/%wmmwww.

The reproducing kernel can be represented in a simple way in terms of the polynomials p, and p,.; using the Christoffel-Dar-
boux formula (see [9,17], among others)

pn+1 (x)pn (y) —Dn (X)pn+1 (y)
X=y

which can be deduced in a straightforward way from the three-term recurrence relation (3). We will denote by Kﬁfj) (x,y) the

i-th (resp. j-th) partial derivative of K,(x,y) with respect to the variable x (resp. y). For the quasi-definite case, the reproduc-

ing kernel is defined as

Ki(X,y) = nia , X#Y,
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