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a b s t r a c t

Considerable attention is currently being devoted to new possibilities of artificial neural
networks (ANN) using in view of their increasing importance for solving the problem of
automated reconstruction of the inner structure of an object. Accompanying algorithms
that effectively quantify uncertainties, deal with ill-posedness, and fully take the nonlinear
model into account are needed. A new ANN-based regularization model is generated and
applied to the task of reconstruction of an inhomogeneous object.

Pattern recognition may be viewed as an ill-posed inverse problem to which the method
of regularization can be applied. In this study, applications of methods from the theory of
inverse problems to pattern recognition are studied. A new learning algorithm derived
from a well-known regularization model is generated and applied to the task of reconstruc-
tion of an inhomogeneous object as pattern recognition. Particularly, it is demonstrated
that pattern recognition can be reformulated in terms of inverse problems defined by a
Riesz-type kernel. This reformulation can be employed to design a learning algorithm
based on a numerical solution of a system of linear equations. Finally, numerical experi-
ments have been carried out with synthetic experimental data considering noise level up
to 5%. Reasonable good recoveries have been achieved with this methodology, and the
results of simulations of this are compatible with the existing methods. This method can
be used in practice of pattern recognition technology and its development and deployment
for applications in industry.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Inverse problems frequently arise in experimental modeling situations when one is interested in the description of the
internal structure of a system and is given indirect, noisy data. Estimating the response of a system given a complete spec-
ification of the internal structure, on the other hand, is the forward problem.

The modeling problem originates when one is given noisy data, observed over irregular intervals of space and time, and is
asked to develop a reasonable model to fit that observed data.

With the advent of high-speed computers and artificial intelligence techniques, this modeling problem underwent a
metamorphosis and emerged as a machine learning problem [2,3]. Tikhonov and Lanweber regularized learning algorithms
have recently received an increasing interest due to both theoretical and computational motivations [1,4,11]. Great deal of
attention is currently being devoted to new possibilities of using artificial neural networks due to their increasing impor-
tance for solving the problem of automated reconstruction of the inner structure of an object. Accompanying algorithms that
effectively quantify uncertainties, deal with ill-posedness, and fully take the nonlinear model into account are needed There-
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fore, it is necessary to both look for possible ways to improve the classical learning algorithms already existent in literature,
and to identify new methods which can compete with the traditional ones in speed, robustness, and quality of results.

Inverse problems are often formulated by assuming that the underlying phenomenon is a dynamic system characterized
by mathematical equations, although no such assumption is always essential. Often the goal is to build an algorithmic model
of the underlying phenomena. In some contexts a model is only a means to an end. The ultimate goal in such cases is to test
the validity of a hypothesis. In these cases, the model is used as a classifier (e.g., neural nets and decision trees), and it mat-
ters little whether the model is parametric or non-parametric; the classification accuracy becomes more important. From
this point of view the entire field of Machine Learning can be treated as inverse problems [2,7,8]. By their very nature, inverse
problems are difficult to solve. Sometimes they are ill-posed. A well-posed mathematical problem must satisfy the following
requirements: existence, uniqueness and stability. The existence problem is really a non-issue in many realistic situations
because the physical reality must be a solution. However, due to noisy and/or insufficient measurement data, an accurate
solution may not exist. More often, the major difficulty is to find a unique solution; this is especially when solving a param-
eter identification problem. Different combinations of parameter values may lead to similar observations. A useful strategy
to handle the non-uniqueness issue is to utilize a priori information as additional constraints. These constraints generally
involve the imposition of requirements such as smoothness on the unknown solution or its derivatives, or positivity, or max-
imum entropy or some other very general mathematical property. A more aggressive approach would be the use of regular-
ization. Given an observed data set, genetic algorithms and programming can be used to search a hypothesis space.

No patterns can be derived solely from empirical data [12]. Some hypotheses about patterns have to be chosen and, from
amongst patterns satisfying these hypotheses, a pattern with a good fit to the data must be sought.

In neurocomputing framework, searching for parameters of their input/output functions is called learning, and samples of
data training sets and a capability to satisfactorily process new data that have not been used for learning is called
generalization.

The capability of generalization depends upon the choice of a hypothesis set of input/output functions, in which one
searches for a pattern (a functional relationship) that matches the empirical data. So a restriction of the hypothesis set to
only physically meaningful functions can improve generalization.

In this paper, starting from a reformulation of the pattern recognition as an inverse problem, we introduce an alternative
learning algorithm derived by a well-known regularization method. We use a Riesz-type kernel to solve classification tasks
by transforming the geometry of input space by embedding them into higher dimensional, inner product spaces, and intro-
ducing a regularization method which adds to the derived integral equation a new term, called stabilizer, which penalizes
undesired input/output functions. We split the problem into a simpler, ill-posed problem (an integral equation with a Riesz-
type kernel) and a well-posed problem. In this way, we isolate and better control the propagation of errors due to the ill-
posedness [8]. Then we show that this reformulation can be employed to design a learning algorithm based upon a numer-
ical solution of a system of linear equations.

This method can be used in practice of pattern recognition technology and its development and deployment for applica-
tions in industry such as automated machine recognition of objects, signals or images and automated decision-making based
on a given set of parameters.

The rest of the paper is organized as follows: Section 2 describes our model and justifies its use. In Section 3, we formulate
the proposed regularized learning algorithm. Section 4 presents main simulation results. Finally, we conclude the paper with
a summary of the work in Section 5.

2. Generalization model as regularization

Let us formulate the generalized problem as regularization in the following way:
Find a function r1

”

L1(O), O

”

Rn, given the function B(xk) = w(xk), xk

”

Ok, Ok

”

Rn.Therefore, we have the following inte-
gral equation of the first kind

Ar1ðxÞ ¼ BðxÞ; x C
��

Xk ð2:1Þ

where

Ar1ðxÞ ¼
Z

X
kðx; yÞr1ðyÞdy and kðx; yÞ ¼ ð1=2pÞ2 x� yj j�2

and A is considered as an operator from L1(O) into L1(Ok). This integral equation is a Fredholm integral equation of the first
kind with a Riesz-type kernel.

First we need to show that Eq. (2.1) represents a severely ill-posed problem. Then we have to prove that a solution r1 (a)
to the Eq. (2.2) exists and is unique.

Theorem 1. Let assume that O and Ok are nonintersecting domains in R3. Then the integral Eq. (2.1) with the Riesz-type
kernel represents an ill-posed problem.
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