Applied Mathematics and Computation 221 (2013) 535-546

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Inequalities for Integro-differential equations involving @CmssMark
derivatives of order between zero and two

Asma Al-Jaser?, Khaled M. Furati®*

2 Department of Mathematical Sciences, Princess Nora Bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
b Department of Mathematics & Statistics, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

ARTICLE INFO ABSTRACT

Keywords: We obtain bounds for integro-differential inequalities involving derivatives of orders
Bihari inequality ) between 0 and 2. We give applications and examples demonstrating the use of these
Fractional differential equations bounds in analyzing the existence and asymptotic behavior of solutions for a class of sin-

Riemann-Liouville integral
Cauchy-type problem
singular differential equations

gular fractional differential equations.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider inequalities of the form

D u(t)| <a(t)+b(t)/[c(s) (i’oﬂiu(s)D ds, t>a,
a j:O

t m k
IDZ u(t)| < a(t) +/ c(s) > _|Diiu(s)| Z‘Dﬁﬂ u(s))ds, t>a,
a i—| j=0
where 1 <o <2,0< By <Py <...<Bp <0<y <y <...<yn <o, where D}. is the Riemann-Liouville derivative. The
coefficients a(t), b(t), c(t) are singular but integrable functions at the lower end of the interval of definition. These inequal-
ities arise naturally when investigating nonlinear differential equations of fractional order of the form

D u(t) :f(n {ppuw} . {Dzaua)}iio)-

These inequalities yield bounds that can be used to investigate the qualitative behavior of the solutions. In particular, the
bounds can be used to guarantee the non-blow-up and the asymptotic behavior for large t of the solutions.

In [2] inequalities involving different types of fractional derivatives were considered. In [1,4-6] bounds for inequalities
involving derivatives of orders between 0 and 1 are obtained. Unlike in [4,5], in [1,6] the coefficients can be singular at
the lower end of the intervals. In [5,6] the bounds on the largest derivative need not be as regular as in [1,4], and thus dif-
ferent classical inequalities are used. All these results may be seen as generalizations and extensions of analogous ones for
derivatives of integer order found, for example, in [3,9].

In this paper we extend the results in [1] to derivatives of order between 0 and 2. This extension gives rise to an extra
term in the composition identity of integrals with derivatives. This term in general is not integrable. However, as in [1],
we can reduce the fractional inequality to a classical one and obtain the bounds.
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In Section 2 we introduce some preliminaries. In Section 3 we present our results and their proofs. Section 4 is devoted to
some applications.

2. Preliminaries

We present the necessary definitions and results used in this work. For more details we refer the reader to [7-11].

We denote by L,, 1 < p < oo, the Lebesgue spaces, and by AC|a, b] the space of all absolutely continuous functions on |a, b],
and by AC"[a, b], where n = 1,2, .., the space of functions f which have continuous derivative up to order n — 1 on [a, b] with
f@=Y € ACla, b], —< < a < b < co. We use the terms non-increasing and non-decreasing to refer to monotonic functions only.

Definition 1. Let f € L;(a, b), the integral

y 1 f(t
Ia,f(x):m/a‘ (X{(ﬁdt, X>a7 OC>O

is called the Riemann-Liouville fractional integral of order o of the function f. Here I' is the Euler’s gamma function.
Definition 2. The expression
1 d r* f(
D, = —__dt =—[- o>0
af ) I'(n—a)dx" /a (x—t)* ™ n=-l-o x>a a>

is called the Riemann-Liouville fractional derivative of order o of the function f, where [¢] is the integer part of c.
We use f,, to denote I% f and we set I2.f = D.f =f.

Definition 3. Let « > 0. A function f € L(a,b) is said to have a summable fractional derivative D},f on (a,b) if
I77*f € AC"[a, b],n = —[~al.

Definition 4. We define the space I} (L,(a,b)),a > 0,1 < p < oo to be the space of all functions f such that f = I7, ¢ for some

@ € Ly(a,b).
Theorem 5. f < I}, (Li(a,b)), o > 0, if and only if f,_, € AC"[a,b],n = —[—0], and
f®(@=0, k=0,1,2,....,n—1.

See [11, Theorem 2.3, p. 43].

Proposition 6. If f has a summable fractional derivative D!, f,1 < < 2, on (a,b), then for o > p, we have the

A1
I DEL(E) = fupl€) - Dﬁ’;g‘” (- - % (t—ay?

almost everywhere in (a,b). See [11, p. 48].

Corollary 7. If f € Li(a,b) has a summable fractional derivative D.f,1 < o < 2, on (a,b), then for 0 < g < o, we have

o—1
DLF®) = D0 + £ et 2 e ap

Proof. In Proposition 6, replace § by o, and replace x by oo — . O
Remark 1. If & — § > 1 or f,_,(a) = 0 in Corollary 7 then D%, f € L,(a,b).

Lemma 8. Let v,f, g and k be non-negative continuous functions on [a, b]. Let @ be a continuous, non-negative and non-decreas-
ing function on [0, c0), with ®(0) = 0 and w(u) > 0 for u > 0. Let F(t) = MaXo<s<f () and G(t) = maXo<s<:g(S). If

2(6) < f(6) + 8(6) / “ks)o(v(s)ds. t e [a.b],

then
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