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a b s t r a c t

We obtain bounds for integro-differential inequalities involving derivatives of orders
between 0 and 2. We give applications and examples demonstrating the use of these
bounds in analyzing the existence and asymptotic behavior of solutions for a class of sin-
gular fractional differential equations.
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1. Introduction

We consider inequalities of the form
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where 1 < a < 2;0 6 b0 < b1 < . . . < bk < a;0 6 c0 < c1 < . . . < cm < a, where Da
aþ is the Riemann–Liouville derivative. The

coefficients aðtÞ; bðtÞ; cðtÞ are singular but integrable functions at the lower end of the interval of definition. These inequal-
ities arise naturally when investigating nonlinear differential equations of fractional order of the form
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These inequalities yield bounds that can be used to investigate the qualitative behavior of the solutions. In particular, the
bounds can be used to guarantee the non-blow-up and the asymptotic behavior for large t of the solutions.

In [2] inequalities involving different types of fractional derivatives were considered. In [1,4–6] bounds for inequalities
involving derivatives of orders between 0 and 1 are obtained. Unlike in [4,5], in [1,6] the coefficients can be singular at
the lower end of the intervals. In [5,6] the bounds on the largest derivative need not be as regular as in [1,4], and thus dif-
ferent classical inequalities are used. All these results may be seen as generalizations and extensions of analogous ones for
derivatives of integer order found, for example, in [3,9].

In this paper we extend the results in [1] to derivatives of order between 0 and 2. This extension gives rise to an extra
term in the composition identity of integrals with derivatives. This term in general is not integrable. However, as in [1],
we can reduce the fractional inequality to a classical one and obtain the bounds.
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In Section 2 we introduce some preliminaries. In Section 3 we present our results and their proofs. Section 4 is devoted to
some applications.

2. Preliminaries

We present the necessary definitions and results used in this work. For more details we refer the reader to [7–11].
We denote by Lp; 1 6 p 61, the Lebesgue spaces, and by AC½a; b� the space of all absolutely continuous functions on ½a; b�,

and by ACn½a; b�, where n ¼ 1;2; . . ., the space of functions f which have continuous derivative up to order n� 1 on ½a; b� with
f ðn�1Þ 2 AC½a; b�;�1 < a < b <1. We use the terms non-increasing and non-decreasing to refer to monotonic functions only.

Definition 1. Let f 2 L1ða; bÞ, the integral

Iaaþ f ðxÞ ¼ 1
CðaÞ

Z x

a
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is called the Riemann–Liouville fractional integral of order a of the function f. Here C is the Euler’s gamma function.

Definition 2. The expression
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is called the Riemann–Liouville fractional derivative of order a of the function f, where ½a� is the integer part of a.
We use fa to denote Iaaþ f and we set I0

aþ f ¼ D0
aþ f ¼ f .

Definition 3. Let a > 0. A function f 2 L1ða; bÞ is said to have a summable fractional derivative Da
aþ f on a; bð Þ if

In�a
aþ f 2 ACn a; b½ �;n ¼ �½�a�.

Definition 4. We define the space Iaaþ Lpða; bÞ
� �

;a > 0;1 6 p <1 to be the space of all functions f such that f ¼ Iaaþu for some
u 2 Lpða; bÞ.

Theorem 5. f 2 Iaaþ L1 a; bð Þð Þ;a > 0, if and only if fn�a 2 ACn a; b½ �;n ¼ �½�a�, and

f ðkÞn�aðaÞ ¼ 0; k ¼ 0;1;2; . . . ;n� 1:

See [11, Theorem 2.3, p. 43].

Proposition 6. If f has a summable fractional derivative Db
aþ f ;1 < b < 2, on a; bð Þ, then for a P b, we have the

IaaþDb
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;

almost everywhere in a; bð Þ. See [11, p. 48].

Corollary 7. If f 2 L1ða; bÞ has a summable fractional derivative Da
aþ f ;1 < a < 2, on ða; bÞ, then for 0 6 b < a, we have
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:

Proof. In Proposition 6, replace b by a, and replace a by a� b. h

Remark 1. If a� b > 1 or f2�aðaÞ ¼ 0 in Corollary 7 then Db
aþ f 2 L1 a; bð Þ.

Lemma 8. Let v ; f ; g and k be non-negative continuous functions on ½a; b�. Let x be a continuous, non-negative and non-decreas-
ing function on 0;1½ Þ, with xð0Þ ¼ 0 and xðuÞ > 0 for u > 0. Let FðtÞ ¼ max06s6t f ðsÞ and GðtÞ ¼max06s6tgðsÞ. If
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then
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