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a b s t r a c t

In this paper we present some new results related to the higher order sigma point filter
(HOSPoF), introduced in [1] for filtering nonlinear multivariate time series. This paper
makes two distinct contributions. Firstly, we propose a new algorithm to generate a dis-
crete statistical distribution to match exactly a specified mean vector, a specified covari-
ance matrix, the average of specified marginal skewness and the average of specified
marginal kurtosis. Both the sigma points and the probability weights are given in closed-
form and no numerical optimization is required. Combined with HOSPoF, this random
sigma point generation algorithm provides a new method for generating proposal density
which propagates the information about higher order moments. A numerical example on
nonlinear, multivariate time series involving real financial market data demonstrates the
utility of this new algorithm. Secondly, we show that HOSPoF achieves a higher order esti-
mation accuracy as compared to UKF for smooth scalar nonlinearities. We believe that this
new filter provides a new and powerful alternative heuristic to existing filtering algorithms
and is useful especially in econometrics and in engineering applications.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Consider the following state space form for a nonlinear time series:

Xðkþ 1Þ ¼ fðXðkÞÞ þ Q ðX ðkÞÞwðkþ 1Þ; ð1Þ

YðkÞ ¼ hðX ðkÞÞ þ vðkÞ; ð2Þ

where X ðkÞ and YðkÞ are the respective state vector and measurement vector at time tðkÞ; f, h are given vector-valued deter-
ministic functions; Q is a matrix valued deterministic function; and vðkÞ;wðkÞ are vector-valued random variables. The time
increment tðkÞ � tðk� 1Þ is assumed constant for all k. The latent state estimation problem is the problem of constructing an
estimate of the random vector XðkÞ; k P 1, based on the noisy time series data Yð1Þ;Yð2Þ; . . . ;YðkÞ. In the special case when
f;h are affine in X ðkÞ;Q is an identity matrix and vðkÞ;wðkÞ are Gaussian, the optimal recursive solution to the state esti-
mation problem is given by linear Kalman filter, as first outlined in [2]. The optimal recursive solution to the state estimation
problem in nonlinear systems is usually not available in closed form. The first current approach that addresses the nonlinear
filtering problems is extended Kalman filter (EKF), where Eq. (1) or its continuous time analogue is locally linearized result-
ing in a linear state space system. A Kalman filter is then employed to obtain the conditional state density of X ðkÞ. Standard
textbooks such as [3] carry an extensive discussion of its theoretical underpinnings and implementation; also see [4,5]. The
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second method is unscented Kalman filter (UKF), where a set of particles – or sigma points – and weights are used to evaluate
the terms in closed-form expressions for updating the state estimate. Several applications of UKF in communication, tracking
and navigation are discussed in [6,7], among others. The ensemble filter (EF) used in climatology is closely related to UKF; see
[8] and references therein. An algorithm which combines some of the desirable properties of both UKF and EF has been pro-
posed in [9]. In [10], approximate methods are developed to deal with the multiplicative uncertainty in the observation
equation under sigma point filtering framework. The third common method is sequential Monte Carlo filter or particle filter
(PF). For this technique, the required conditional density function of XðkÞ given measurement YðkÞ at time tðkÞ is repre-
sented by a set of random samples (or particles) and associated probability weights; see [11,12] and references therein for
more details on PF. Particle filters need a specification of approximate posterior density, called the proposal density. This
may itself be derived from EKF, UKF or the known state transition density. We will call the versions of particle filters as
PF-EKF, PF-UKF and PF-T respectively.

The rest of this paper is organized as follows. Section 2 briefly reviews the traditional unscented Kalman filter. Section 3
introduces the algorithm for the unscented filter with higher order moment matching, which was first proposed by the
authors in [1]. The traditional particle filter is discussed in Section 4.1. Sections 4.2 and 6 represent the main contribution
of this paper. Section 4.2 introduces the new proposal distribution that uses and propagates the information about higher
order moments. This section represents a major modification on the algorithm proposed in [1] since it allows random draws
of sigma points. We are aware that matching of the average of higher order moments may not add value if the average is over
a very large state dimension. However, the class of applications where the dimension is five or less is still very large; in fact, it
is unusual to find time series models with more than four latent states in econometrics and finance. The proposed algorithm
can outperform traditional filtering algorithms in latent state estimation of nonlinear time series models where the depar-
ture from conditional Gaussianity of prior distribution is quite significant and the state dimension is low enough to make
matching of the average kurtosis and the average skewness useful. This is illustrated by an example in Section 5, where
the utility of our method is compared with PF-T, PF-EKF and PF-UKF in a multivariate case on a real financial data set.
The theoretical accuracy of the conditional mean and the conditional variance estimation using the new method for the uni-
variate case is discussed in Section 6. Section 7 summarizes the results of the paper.

2. Unscented Kalman filter

Consider the system of Eqs. 1,2 with nonlinear functions f and h. The unscented filtering algorithm can be briefly de-
scribed as follows. Suppose that at time tðkÞ, the mean X̂ðkjkÞ and the covariance PxxðkjkÞ are available for the system in
Eq. (1). Then 2nþ 1 symmetric sigma points are chosen in the following way:

X ð0ÞðkjkÞ ¼ X̂ðkjkÞ; X ðiÞðkjkÞ ¼ X̂ðkjkÞ � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ jÞPxx

p
Þi; ð3Þ

where i ¼ 1;2; . . . ; n;j is a scaling parameter and ð
ffiffiffiffiffiffiffi
Pxx
p

Þi is the ith column of the matrix square root of Pxx. The probability
weights vector W, where the ith component Wi is associated with the ith sigma point X ðiÞðkjkÞ, is defined as:

W0 ¼
j

nþ j
; Wi ¼

1
2ðnþ jÞ ; i ¼ 1;2; . . . ;2n: ð4Þ

The following result can then be verified by a straightforward algebraic manipulation (see, e.g. [11]):

Proposition 1. Sigma points and corresponding probability weights defined in (3) and (4) match the mean X̂ðkjkÞ and the
covariance PxxðkjkÞ exactly.

We compute the predicted mean of Xðkþ 1jkÞ using

X ðiÞðkþ 1jkÞ ¼ fðX ðiÞðkjkÞÞ; X̂ðkþ 1jkÞ ¼
X2N

i¼0

WiX
ðiÞðkþ 1jkÞ; ð5Þ

where Wi are defined in (4). Covariance matrices Pxyðkþ 1jkÞ and Pyyðkþ 1jkÞ are calculated as

Pxyðkþ 1jkÞ ¼
X2N

i¼0

WiðX ðiÞðkþ 1jkÞ � X̂ðkþ 1jkÞÞvðiÞðkÞT ; Pyyðkþ 1jkÞ ¼
X2N

i¼0

WivðiÞðkÞvðiÞðkÞT ;

where vðiÞðkÞ ¼ YðiÞðkþ 1Þ � Ŷðkþ 1Þ;YðiÞðkþ 1Þ ¼ hðX ðiÞðkþ 1jkÞÞ and Ŷðkþ 1Þ ¼
P2N

i¼0WiY
ðiÞðkþ 1Þ. Pxxðkþ 1jkÞ is com-

puted similarly. Once the true measurement Ykþ1 becomes available, we can update the mean estimate in (5) as
X̂ ðkþ 1jkþ 1Þ ¼ X̂ ðkþ 1jkÞ þ Kðkþ 1ÞðYkþ1 � Ŷðkþ 1ÞÞ, where Kðkþ 1Þ ¼ Pxyðkþ 1jkÞP�1

yy ðkþ 1jkÞ. More details on this
algorithm can be found in [11]. UKF has been successfully used as an alternative to EKF; see [7–14] and references therein.
Besides being used as a stand-alone filtering algorithm, it has also been used to produce a proposal distribution for PF, see
[13].
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